{"title":"铌改性对中碳铸钢凝固和结晶机理的影响","authors":"Haitao Wang, Shufeng Sun, Qinyang Wang","doi":"10.1007/s11041-024-01039-9","DOIUrl":null,"url":null,"abstract":"<p>The effect of niobium modification on refinement of primary austenite, shrinkage characteristic, and solidification behavior of medium-carbon cast steel melted in a medium-frequency induction furnace is studied. It is established that the modification with 0.1 wt.% niobium increases the fluidity of the steel liquid, enhances the feeding capacity of the cast steel, turns the dispersed shrinkage porosity into concentrated shrinkage cavity, changes the coarse dendrites to fine ones, even in equiaxed grain structures, and dwindles the primary austenite grain size greatly. Using electron microscopy and energy-dispersive analysis, it is discovered that niobium combines with carbon to form solid phase particles of NbC. These particles are chemically stable at high melting temperatures and facilitate the primary austenite nucleation effectively by non-spontaneous nucleating. A model of matching between the crystal lattices γ-Fe and NbC is suggested. The mechanism of NbC heterogeneous nucleation consists in that the primary austenite grows on {111}<sub>γ-Fe</sub> along to the closest-packed plane {111}<sub>NbC</sub> in crystal orientation <span>\\({\\langle 011\\rangle }_{\\gamma -\\mathrm{Fe}}\\Vert {\\langle 112\\rangle }_{\\mathrm{NbC}}\\)</span>, and the mismatch <span>\\({\\updelta }_{{\\langle 111\\rangle }_{\\mathrm{NbC}}}^{{\\langle 111\\rangle }_{\\gamma -\\mathrm{Fe}}}\\)</span> of the crystal planes is only 9.79%.</p>","PeriodicalId":701,"journal":{"name":"Metal Science and Heat Treatment","volume":"66 3-4","pages":"210 - 218"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Niobium Modification on Solidification and Crystallization Mechanism of Medium-Carbon Cast Steel\",\"authors\":\"Haitao Wang, Shufeng Sun, Qinyang Wang\",\"doi\":\"10.1007/s11041-024-01039-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of niobium modification on refinement of primary austenite, shrinkage characteristic, and solidification behavior of medium-carbon cast steel melted in a medium-frequency induction furnace is studied. It is established that the modification with 0.1 wt.% niobium increases the fluidity of the steel liquid, enhances the feeding capacity of the cast steel, turns the dispersed shrinkage porosity into concentrated shrinkage cavity, changes the coarse dendrites to fine ones, even in equiaxed grain structures, and dwindles the primary austenite grain size greatly. Using electron microscopy and energy-dispersive analysis, it is discovered that niobium combines with carbon to form solid phase particles of NbC. These particles are chemically stable at high melting temperatures and facilitate the primary austenite nucleation effectively by non-spontaneous nucleating. A model of matching between the crystal lattices γ-Fe and NbC is suggested. The mechanism of NbC heterogeneous nucleation consists in that the primary austenite grows on {111}<sub>γ-Fe</sub> along to the closest-packed plane {111}<sub>NbC</sub> in crystal orientation <span>\\\\({\\\\langle 011\\\\rangle }_{\\\\gamma -\\\\mathrm{Fe}}\\\\Vert {\\\\langle 112\\\\rangle }_{\\\\mathrm{NbC}}\\\\)</span>, and the mismatch <span>\\\\({\\\\updelta }_{{\\\\langle 111\\\\rangle }_{\\\\mathrm{NbC}}}^{{\\\\langle 111\\\\rangle }_{\\\\gamma -\\\\mathrm{Fe}}}\\\\)</span> of the crystal planes is only 9.79%.</p>\",\"PeriodicalId\":701,\"journal\":{\"name\":\"Metal Science and Heat Treatment\",\"volume\":\"66 3-4\",\"pages\":\"210 - 218\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metal Science and Heat Treatment\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11041-024-01039-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Science and Heat Treatment","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11041-024-01039-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of Niobium Modification on Solidification and Crystallization Mechanism of Medium-Carbon Cast Steel
The effect of niobium modification on refinement of primary austenite, shrinkage characteristic, and solidification behavior of medium-carbon cast steel melted in a medium-frequency induction furnace is studied. It is established that the modification with 0.1 wt.% niobium increases the fluidity of the steel liquid, enhances the feeding capacity of the cast steel, turns the dispersed shrinkage porosity into concentrated shrinkage cavity, changes the coarse dendrites to fine ones, even in equiaxed grain structures, and dwindles the primary austenite grain size greatly. Using electron microscopy and energy-dispersive analysis, it is discovered that niobium combines with carbon to form solid phase particles of NbC. These particles are chemically stable at high melting temperatures and facilitate the primary austenite nucleation effectively by non-spontaneous nucleating. A model of matching between the crystal lattices γ-Fe and NbC is suggested. The mechanism of NbC heterogeneous nucleation consists in that the primary austenite grows on {111}γ-Fe along to the closest-packed plane {111}NbC in crystal orientation \({\langle 011\rangle }_{\gamma -\mathrm{Fe}}\Vert {\langle 112\rangle }_{\mathrm{NbC}}\), and the mismatch \({\updelta }_{{\langle 111\rangle }_{\mathrm{NbC}}}^{{\langle 111\rangle }_{\gamma -\mathrm{Fe}}}\) of the crystal planes is only 9.79%.
期刊介绍:
Metal Science and Heat Treatment presents new fundamental and practical research in physical metallurgy, heat treatment equipment, and surface engineering.
Topics covered include:
New structural, high temperature, tool and precision steels;
Cold-resistant, corrosion-resistant and radiation-resistant steels;
Steels with rapid decline of induced properties;
Alloys with shape memory effect;
Bulk-amorphyzable metal alloys;
Microcrystalline alloys;
Nano materials and foam materials for medical use.