{"title":"将土钉墙与钢筋混凝土建筑结合起来,在空间有限的场地实现抗震稳定性","authors":"Amrita, B. R. Jayalekshmi, R. Shivashankar","doi":"10.1007/s10064-024-03922-4","DOIUrl":null,"url":null,"abstract":"<div><p>In urban environments, space constraints necessitate innovative construction methods. Due to rising demand for infrastructures and scarcity of plane ground, structures are built on sloping or irregular ground. To make use of available land, vertical cuts or excavations are made in the natural soil stratum which can be effectively retained using the soil nailing technique. However, if the area adjacent to the nailed vertical cut is utilised for constructing a multi-storeyed building, the behaviour of the nailed structure may vary. This study examines the impact of the presence of multi-storeyed RC buildings on the response of soil-nailed structures in their proximity during earthquake ground motion. The seismic response of a soil-nailed structure is evaluated in the presence of various heights of medium-rise multi-storeyed buildings. Three-dimensional multi-storeyed buildings and soil-nailed structures are analysed with various arrangements and connectivities between them, taking into account different soil profiles at the site. Dynamic finite element analyses of integrated soil-nailed wall-building systems have been performed using time history data of ground motion. The findings suggest that the integration between the two structures enhances the seismic stability of both the structures under dynamic load as evident in the reduced deformation and acceleration of the structures. It restricts the lateral movement of the nailed wall and reduces its displacement by about 40%. This integration can be implemented in space-constrained sites for optimum utilisation of available space.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating soil-nailed walls with RC building for seismic stability in space-constrained sites\",\"authors\":\"Amrita, B. R. Jayalekshmi, R. Shivashankar\",\"doi\":\"10.1007/s10064-024-03922-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In urban environments, space constraints necessitate innovative construction methods. Due to rising demand for infrastructures and scarcity of plane ground, structures are built on sloping or irregular ground. To make use of available land, vertical cuts or excavations are made in the natural soil stratum which can be effectively retained using the soil nailing technique. However, if the area adjacent to the nailed vertical cut is utilised for constructing a multi-storeyed building, the behaviour of the nailed structure may vary. This study examines the impact of the presence of multi-storeyed RC buildings on the response of soil-nailed structures in their proximity during earthquake ground motion. The seismic response of a soil-nailed structure is evaluated in the presence of various heights of medium-rise multi-storeyed buildings. Three-dimensional multi-storeyed buildings and soil-nailed structures are analysed with various arrangements and connectivities between them, taking into account different soil profiles at the site. Dynamic finite element analyses of integrated soil-nailed wall-building systems have been performed using time history data of ground motion. The findings suggest that the integration between the two structures enhances the seismic stability of both the structures under dynamic load as evident in the reduced deformation and acceleration of the structures. It restricts the lateral movement of the nailed wall and reduces its displacement by about 40%. This integration can be implemented in space-constrained sites for optimum utilisation of available space.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 10\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03922-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03922-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Integrating soil-nailed walls with RC building for seismic stability in space-constrained sites
In urban environments, space constraints necessitate innovative construction methods. Due to rising demand for infrastructures and scarcity of plane ground, structures are built on sloping or irregular ground. To make use of available land, vertical cuts or excavations are made in the natural soil stratum which can be effectively retained using the soil nailing technique. However, if the area adjacent to the nailed vertical cut is utilised for constructing a multi-storeyed building, the behaviour of the nailed structure may vary. This study examines the impact of the presence of multi-storeyed RC buildings on the response of soil-nailed structures in their proximity during earthquake ground motion. The seismic response of a soil-nailed structure is evaluated in the presence of various heights of medium-rise multi-storeyed buildings. Three-dimensional multi-storeyed buildings and soil-nailed structures are analysed with various arrangements and connectivities between them, taking into account different soil profiles at the site. Dynamic finite element analyses of integrated soil-nailed wall-building systems have been performed using time history data of ground motion. The findings suggest that the integration between the two structures enhances the seismic stability of both the structures under dynamic load as evident in the reduced deformation and acceleration of the structures. It restricts the lateral movement of the nailed wall and reduces its displacement by about 40%. This integration can be implemented in space-constrained sites for optimum utilisation of available space.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.