复杂蒙日-安培方程的渐近性和收敛性

IF 2.4 1区 数学 Q1 MATHEMATICS
Qing Han, Xumin Jiang
{"title":"复杂蒙日-安培方程的渐近性和收敛性","authors":"Qing Han,&nbsp;Xumin Jiang","doi":"10.1007/s40818-024-00171-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the asymptotics of complete Kähler-Einstein metrics on strictly pseudoconvex domains in <span>\\(\\mathbb {C}^n\\)</span> and derive a convergence theorem for solutions to the corresponding Monge-Ampère equation. If only a portion of the boundary is analytic, the solutions satisfy Gevrey type estimates for tangential derivatives. A counterexample for the model linearized equation suggests that there is no local convergence theorem for the complex Monge-Ampère equation.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics and Convergence for the Complex Monge-Ampère Equation\",\"authors\":\"Qing Han,&nbsp;Xumin Jiang\",\"doi\":\"10.1007/s40818-024-00171-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the asymptotics of complete Kähler-Einstein metrics on strictly pseudoconvex domains in <span>\\\\(\\\\mathbb {C}^n\\\\)</span> and derive a convergence theorem for solutions to the corresponding Monge-Ampère equation. If only a portion of the boundary is analytic, the solutions satisfy Gevrey type estimates for tangential derivatives. A counterexample for the model linearized equation suggests that there is no local convergence theorem for the complex Monge-Ampère equation.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-024-00171-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00171-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在\(\mathbb {C}^n\) 中严格伪凸域上的完整凯勒-爱因斯坦度量的渐近性,并推导出相应蒙日-安培方程的解的收敛定理。如果只有部分边界是解析的,解就会满足切向导数的 Gevrey 型估计。模型线性化方程的反例表明,复数 Monge-Ampère 方程不存在局部收敛定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics and Convergence for the Complex Monge-Ampère Equation

We study the asymptotics of complete Kähler-Einstein metrics on strictly pseudoconvex domains in \(\mathbb {C}^n\) and derive a convergence theorem for solutions to the corresponding Monge-Ampère equation. If only a portion of the boundary is analytic, the solutions satisfy Gevrey type estimates for tangential derivatives. A counterexample for the model linearized equation suggests that there is no local convergence theorem for the complex Monge-Ampère equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信