{"title":"双非对称极限表面及其在平面操纵中的应用","authors":"Xili Yi, An Dang, Nima Fazeli","doi":"10.1007/s10514-024-10173-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present models and planning algorithms to slide an object on a planar surface via frictional patch contact made with its <i>top surface</i>, whether the surface is horizontal or inclined. The core of our approach is the asymmetric dual limit surfaces model that determines slip boundary conditions for both the top and support patch contacts made with the object. This model enables us to compute a range of twists that can keep the object in sticking contact with the robot end-effector while slipping on the supporting plane. Based on these constraints, we derive a planning algorithm to slide objects with only top contact to arbitrary goal poses without slippage between end effector and the object. We fit the proposed model and demonstrate its predictive accuracy on a variety of object geometries and motions. We also evaluate the planning algorithm over a variety of objects and goals, demonstrating an orientation error improvement of 90% when compared to methods naive to linear path planners. For more results and information, please visit https://www.mmintlab.com/dual-limit-surfaces/.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 7","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual asymmetric limit surfaces and their applications to planar manipulation\",\"authors\":\"Xili Yi, An Dang, Nima Fazeli\",\"doi\":\"10.1007/s10514-024-10173-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present models and planning algorithms to slide an object on a planar surface via frictional patch contact made with its <i>top surface</i>, whether the surface is horizontal or inclined. The core of our approach is the asymmetric dual limit surfaces model that determines slip boundary conditions for both the top and support patch contacts made with the object. This model enables us to compute a range of twists that can keep the object in sticking contact with the robot end-effector while slipping on the supporting plane. Based on these constraints, we derive a planning algorithm to slide objects with only top contact to arbitrary goal poses without slippage between end effector and the object. We fit the proposed model and demonstrate its predictive accuracy on a variety of object geometries and motions. We also evaluate the planning algorithm over a variety of objects and goals, demonstrating an orientation error improvement of 90% when compared to methods naive to linear path planners. For more results and information, please visit https://www.mmintlab.com/dual-limit-surfaces/.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"48 7\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10173-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10173-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dual asymmetric limit surfaces and their applications to planar manipulation
In this paper, we present models and planning algorithms to slide an object on a planar surface via frictional patch contact made with its top surface, whether the surface is horizontal or inclined. The core of our approach is the asymmetric dual limit surfaces model that determines slip boundary conditions for both the top and support patch contacts made with the object. This model enables us to compute a range of twists that can keep the object in sticking contact with the robot end-effector while slipping on the supporting plane. Based on these constraints, we derive a planning algorithm to slide objects with only top contact to arbitrary goal poses without slippage between end effector and the object. We fit the proposed model and demonstrate its predictive accuracy on a variety of object geometries and motions. We also evaluate the planning algorithm over a variety of objects and goals, demonstrating an orientation error improvement of 90% when compared to methods naive to linear path planners. For more results and information, please visit https://www.mmintlab.com/dual-limit-surfaces/.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.