带有两个奇偶校验的新系统 MDS 阵列代码

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Lan Ma;Liyang Zhou;Shaoteng Liu;Xiangyu Chen;Qifu Sun
{"title":"带有两个奇偶校验的新系统 MDS 阵列代码","authors":"Lan Ma;Liyang Zhou;Shaoteng Liu;Xiangyu Chen;Qifu Sun","doi":"10.1109/OJCOMS.2024.3468873","DOIUrl":null,"url":null,"abstract":"Row-diagonal parity (RDP) code is a classical \n<inline-formula> <tex-math>$(k+2,~k)$ </tex-math></inline-formula>\n systematic maximum distance separable (MDS) array code with \n<inline-formula> <tex-math>$k \\leq L-1$ </tex-math></inline-formula>\n under sub-packetization level \n<inline-formula> <tex-math>$l = L-1$ </tex-math></inline-formula>\n, where L is a prime integer. When \n<inline-formula> <tex-math>$k = L-1$ </tex-math></inline-formula>\n, its encoding requires \n<inline-formula> <tex-math>$2-{}\\frac {2}{k}$ </tex-math></inline-formula>\n XORs per original data bit, which exactly achieves theoretical optimal lower bound. In this paper, we present three new constructions of \n<inline-formula> <tex-math>$(k+2,~k)$ </tex-math></inline-formula>\n systematic MDS array codes. First, under sub-packetization level \n<inline-formula> <tex-math>$l = 4$ </tex-math></inline-formula>\n, we novelly design a \n<inline-formula> <tex-math>$(17,~15)$ </tex-math></inline-formula>\n array code \n<inline-formula> <tex-math>${\\mathcal {C}}_{1}$ </tex-math></inline-formula>\n, where k can reach the largest possible value to satisfy the MDS property. Moreover, when \n<inline-formula> <tex-math>$k \\leq 7$ </tex-math></inline-formula>\n, the encoding complexity of its subcodes can exactly achieve the theoretical optimal \n<inline-formula> <tex-math>$2-{}\\frac {2}{k}$ </tex-math></inline-formula>\n XORs per original data bit, and likewise, the decoding complexity of the subcodes with \n<inline-formula> <tex-math>$k \\leq 4$ </tex-math></inline-formula>\n is also exactly optimal. Under sub-packetization level \n<inline-formula> <tex-math>$l = L-1$ </tex-math></inline-formula>\n with certain primes L, the second construction yields an MDS array code \n<inline-formula> <tex-math>${\\mathcal {C}}_{2}$ </tex-math></inline-formula>\n with \n<inline-formula> <tex-math>$k \\leq {}\\frac {L(L-1)}{2}$ </tex-math></inline-formula>\n, and the encoding complexity of \n<inline-formula> <tex-math>${\\mathcal {C}}_{2}$ </tex-math></inline-formula>\n is also exactly optimal for \n<inline-formula> <tex-math>$k = L-1$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$2L-3$ </tex-math></inline-formula>\n. Furthermore, based on bit permutation, the third MDS array code \n<inline-formula> <tex-math>${\\mathcal {C}}_{3}$ </tex-math></inline-formula>\n is obtained with \n<inline-formula> <tex-math>$k \\leq L(L-1)$ </tex-math></inline-formula>\n under sub-packetization level \n<inline-formula> <tex-math>$l = 2(L-1)$ </tex-math></inline-formula>\n with certain primes L. In particular, as an extension of \n<inline-formula> <tex-math>${\\mathcal {C}}_{2}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>${\\mathcal {C}}_{3}$ </tex-math></inline-formula>\n exactly achieves the optimal encoding complexity for \n<inline-formula> <tex-math>$k = 2(2L-3)$ </tex-math></inline-formula>\n, which does not hold for other array codes in the literature.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"6329-6342"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695780","citationCount":"0","resultStr":"{\"title\":\"New Systematic MDS Array Codes With Two Parities\",\"authors\":\"Lan Ma;Liyang Zhou;Shaoteng Liu;Xiangyu Chen;Qifu Sun\",\"doi\":\"10.1109/OJCOMS.2024.3468873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Row-diagonal parity (RDP) code is a classical \\n<inline-formula> <tex-math>$(k+2,~k)$ </tex-math></inline-formula>\\n systematic maximum distance separable (MDS) array code with \\n<inline-formula> <tex-math>$k \\\\leq L-1$ </tex-math></inline-formula>\\n under sub-packetization level \\n<inline-formula> <tex-math>$l = L-1$ </tex-math></inline-formula>\\n, where L is a prime integer. When \\n<inline-formula> <tex-math>$k = L-1$ </tex-math></inline-formula>\\n, its encoding requires \\n<inline-formula> <tex-math>$2-{}\\\\frac {2}{k}$ </tex-math></inline-formula>\\n XORs per original data bit, which exactly achieves theoretical optimal lower bound. In this paper, we present three new constructions of \\n<inline-formula> <tex-math>$(k+2,~k)$ </tex-math></inline-formula>\\n systematic MDS array codes. First, under sub-packetization level \\n<inline-formula> <tex-math>$l = 4$ </tex-math></inline-formula>\\n, we novelly design a \\n<inline-formula> <tex-math>$(17,~15)$ </tex-math></inline-formula>\\n array code \\n<inline-formula> <tex-math>${\\\\mathcal {C}}_{1}$ </tex-math></inline-formula>\\n, where k can reach the largest possible value to satisfy the MDS property. Moreover, when \\n<inline-formula> <tex-math>$k \\\\leq 7$ </tex-math></inline-formula>\\n, the encoding complexity of its subcodes can exactly achieve the theoretical optimal \\n<inline-formula> <tex-math>$2-{}\\\\frac {2}{k}$ </tex-math></inline-formula>\\n XORs per original data bit, and likewise, the decoding complexity of the subcodes with \\n<inline-formula> <tex-math>$k \\\\leq 4$ </tex-math></inline-formula>\\n is also exactly optimal. Under sub-packetization level \\n<inline-formula> <tex-math>$l = L-1$ </tex-math></inline-formula>\\n with certain primes L, the second construction yields an MDS array code \\n<inline-formula> <tex-math>${\\\\mathcal {C}}_{2}$ </tex-math></inline-formula>\\n with \\n<inline-formula> <tex-math>$k \\\\leq {}\\\\frac {L(L-1)}{2}$ </tex-math></inline-formula>\\n, and the encoding complexity of \\n<inline-formula> <tex-math>${\\\\mathcal {C}}_{2}$ </tex-math></inline-formula>\\n is also exactly optimal for \\n<inline-formula> <tex-math>$k = L-1$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$2L-3$ </tex-math></inline-formula>\\n. Furthermore, based on bit permutation, the third MDS array code \\n<inline-formula> <tex-math>${\\\\mathcal {C}}_{3}$ </tex-math></inline-formula>\\n is obtained with \\n<inline-formula> <tex-math>$k \\\\leq L(L-1)$ </tex-math></inline-formula>\\n under sub-packetization level \\n<inline-formula> <tex-math>$l = 2(L-1)$ </tex-math></inline-formula>\\n with certain primes L. In particular, as an extension of \\n<inline-formula> <tex-math>${\\\\mathcal {C}}_{2}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>${\\\\mathcal {C}}_{3}$ </tex-math></inline-formula>\\n exactly achieves the optimal encoding complexity for \\n<inline-formula> <tex-math>$k = 2(2L-3)$ </tex-math></inline-formula>\\n, which does not hold for other array codes in the literature.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"6329-6342\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695780\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10695780/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10695780/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

行对角奇偶校验码(RDP)是一种经典的$(k+2,~k)$系统最大距离可分(MDS)阵列码,在子包化水平$l = L-1$ 下,$k \leq L-1$ ,其中 L 是一个质整数。当 $k = L-1$ 时,其编码需要对每个原始数据位进行 $2-{}\frac {2}{k}$ XOR,这正好达到了理论上的最优下限。本文提出了 $(k+2,~k)$ 系统 MDS 阵列码的三种新构造。首先,在子包化水平 $l = 4$ 下,我们新颖地设计了一种 $(17,~15)$ 阵列码 ${mathcal {C}}_{1}$ ,其中 k 可以达到满足 MDS 特性的最大可能值。此外,当$k \leq 7$时,其子码的编码复杂度可以精确地达到理论上的最优值,即每个原始数据比特的XOR次数为2-{}\frac {2}{k}$ ,同样,$k \leq 4$的子码的解码复杂度也是最优的。在具有一定素数 L 的子包化水平 $l = L-1$ 条件下,第二种结构会产生具有 $k \leq {}\frac {L(L-1)}{2}$ 的 MDS 阵列码 ${mathcal {C}}_{2}$ ,并且在 $k = L-1$ , $2L-3$ 条件下,${mathcal {C}}_{2}$ 的编码复杂度也是最优的。此外,基于比特置换,在子包化水平 $l = 2(L-1)$ 和特定素数 L 下,得到了第三种 MDS 阵列码 ${mathcal{C}}_{3}$,其编码复杂度为 $k \leq L(L-1)$ 。特别是,作为 ${mathcal {C}}_{2}$ 的扩展,${mathcal {C}}_{3}$ 在 $k = 2(2L-3)$ 时精确地达到了最佳编码复杂度,而这在文献中的其他数组编码中是不成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Systematic MDS Array Codes With Two Parities
Row-diagonal parity (RDP) code is a classical $(k+2,~k)$ systematic maximum distance separable (MDS) array code with $k \leq L-1$ under sub-packetization level $l = L-1$ , where L is a prime integer. When $k = L-1$ , its encoding requires $2-{}\frac {2}{k}$ XORs per original data bit, which exactly achieves theoretical optimal lower bound. In this paper, we present three new constructions of $(k+2,~k)$ systematic MDS array codes. First, under sub-packetization level $l = 4$ , we novelly design a $(17,~15)$ array code ${\mathcal {C}}_{1}$ , where k can reach the largest possible value to satisfy the MDS property. Moreover, when $k \leq 7$ , the encoding complexity of its subcodes can exactly achieve the theoretical optimal $2-{}\frac {2}{k}$ XORs per original data bit, and likewise, the decoding complexity of the subcodes with $k \leq 4$ is also exactly optimal. Under sub-packetization level $l = L-1$ with certain primes L, the second construction yields an MDS array code ${\mathcal {C}}_{2}$ with $k \leq {}\frac {L(L-1)}{2}$ , and the encoding complexity of ${\mathcal {C}}_{2}$ is also exactly optimal for $k = L-1$ , $2L-3$ . Furthermore, based on bit permutation, the third MDS array code ${\mathcal {C}}_{3}$ is obtained with $k \leq L(L-1)$ under sub-packetization level $l = 2(L-1)$ with certain primes L. In particular, as an extension of ${\mathcal {C}}_{2}$ , ${\mathcal {C}}_{3}$ exactly achieves the optimal encoding complexity for $k = 2(2L-3)$ , which does not hold for other array codes in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信