{"title":"基于密度泛函理论的三体非共价相互作用中的精确交换和经验弥散的作用","authors":"Mauricio Cafiero*, ","doi":"10.1021/acs.jpca.4c0326210.1021/acs.jpca.4c03262","DOIUrl":null,"url":null,"abstract":"<p >Total and three-body interaction energies are calculated for a benchmark set of three-body systems using a range of different types of density functional theory (DFT) methods, with the results compared to CCSD(T)/CBS results from the benchmark reference [<i>Phys. Chem. Chem. Phys.</i> <b>2023</b>, <i>25</i>, 28621–28637]. Inclusion of Hartree-Fock exchange, via either a global or range-separated hybrid approach or inclusion of empirical dispersion corrections, increases accuracy for total and three-body interactions. Basis set convergence testing shows that the aug-cc-pVTZ basis set is well converged with little to no change seen when using quadruple-ζ basis sets. The accuracy of the DFT methods is similar when calculating interaction energies for both global and local minimum structures. Overall, the CAM-B3LYP-D3BJ, B97D3, and ωB97XD functionals are recommended for calculating three-body interactions.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"128 40","pages":"8777–8786 8777–8786"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.4c03262","citationCount":"0","resultStr":"{\"title\":\"Role of Exact Exchange and Empirical Dispersion in Density Functional Theory-Based Three-Body Noncovalent Interactions\",\"authors\":\"Mauricio Cafiero*, \",\"doi\":\"10.1021/acs.jpca.4c0326210.1021/acs.jpca.4c03262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Total and three-body interaction energies are calculated for a benchmark set of three-body systems using a range of different types of density functional theory (DFT) methods, with the results compared to CCSD(T)/CBS results from the benchmark reference [<i>Phys. Chem. Chem. Phys.</i> <b>2023</b>, <i>25</i>, 28621–28637]. Inclusion of Hartree-Fock exchange, via either a global or range-separated hybrid approach or inclusion of empirical dispersion corrections, increases accuracy for total and three-body interactions. Basis set convergence testing shows that the aug-cc-pVTZ basis set is well converged with little to no change seen when using quadruple-ζ basis sets. The accuracy of the DFT methods is similar when calculating interaction energies for both global and local minimum structures. Overall, the CAM-B3LYP-D3BJ, B97D3, and ωB97XD functionals are recommended for calculating three-body interactions.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"128 40\",\"pages\":\"8777–8786 8777–8786\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.4c03262\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.4c03262\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c03262","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Role of Exact Exchange and Empirical Dispersion in Density Functional Theory-Based Three-Body Noncovalent Interactions
Total and three-body interaction energies are calculated for a benchmark set of three-body systems using a range of different types of density functional theory (DFT) methods, with the results compared to CCSD(T)/CBS results from the benchmark reference [Phys. Chem. Chem. Phys.2023, 25, 28621–28637]. Inclusion of Hartree-Fock exchange, via either a global or range-separated hybrid approach or inclusion of empirical dispersion corrections, increases accuracy for total and three-body interactions. Basis set convergence testing shows that the aug-cc-pVTZ basis set is well converged with little to no change seen when using quadruple-ζ basis sets. The accuracy of the DFT methods is similar when calculating interaction energies for both global and local minimum structures. Overall, the CAM-B3LYP-D3BJ, B97D3, and ωB97XD functionals are recommended for calculating three-body interactions.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.