具有优异吸水性能的超薄 BPH 纳米片

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Edwin B. Clatworthy*, Rémy Guillet-Nicolas, Philippe Boullay, Michael Badawi, Yann Foucaud, Eddy Dib, Nicolas Barrier, Arnold A. Paecklar, Maxime Debost, Sajjad Ghojavand, Jean-Pierre Gilson, Izabel Medeiros-Costa and Svetlana Mintova*, 
{"title":"具有优异吸水性能的超薄 BPH 纳米片","authors":"Edwin B. Clatworthy*,&nbsp;Rémy Guillet-Nicolas,&nbsp;Philippe Boullay,&nbsp;Michael Badawi,&nbsp;Yann Foucaud,&nbsp;Eddy Dib,&nbsp;Nicolas Barrier,&nbsp;Arnold A. Paecklar,&nbsp;Maxime Debost,&nbsp;Sajjad Ghojavand,&nbsp;Jean-Pierre Gilson,&nbsp;Izabel Medeiros-Costa and Svetlana Mintova*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0162510.1021/acsmaterialslett.4c01625","DOIUrl":null,"url":null,"abstract":"<p >The synthesis of ultrathin BPH zeolite nanosheets from an aluminosilicate colloidal suspension using exclusively inorganic structure directing agents under mild conditions is reported. The improved synthesis yields nanosheets of 4–7 nm and a Si/Al ratio of 1.5; combined 3D electron diffraction and DFT calculations reveal the spatial distribution of extra-framework cations throughout the microporous structure. The ultrathin BPH nanosheets exhibit high and regular intersheet mesoporosity, and substantially improved thermal stability. The notable mesoporosity bestows exceptional water adsorption behavior typically unseen for zeolites; the as-prepared material consists of up to 49% adsorbed H<sub>2</sub>O by weight and adsorbs up to 32 wt % H<sub>2</sub>O at 90% relative humidity. <sup>2</sup>H MAS NMR spectroscopy identifies different types of O<sup>2</sup>H environments ascribed to silanol species exhibiting two motion behaviors. H<sub>2</sub>O sorption analysis demonstrates reproducible behavior over multiple cycles and low temperature regeneration, making the ultrathin BPH nanosheets attractive candidates for gas drying and membrane applications.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin BPH Nanosheets with Exceptional Water Adsorption Properties\",\"authors\":\"Edwin B. Clatworthy*,&nbsp;Rémy Guillet-Nicolas,&nbsp;Philippe Boullay,&nbsp;Michael Badawi,&nbsp;Yann Foucaud,&nbsp;Eddy Dib,&nbsp;Nicolas Barrier,&nbsp;Arnold A. Paecklar,&nbsp;Maxime Debost,&nbsp;Sajjad Ghojavand,&nbsp;Jean-Pierre Gilson,&nbsp;Izabel Medeiros-Costa and Svetlana Mintova*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0162510.1021/acsmaterialslett.4c01625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The synthesis of ultrathin BPH zeolite nanosheets from an aluminosilicate colloidal suspension using exclusively inorganic structure directing agents under mild conditions is reported. The improved synthesis yields nanosheets of 4–7 nm and a Si/Al ratio of 1.5; combined 3D electron diffraction and DFT calculations reveal the spatial distribution of extra-framework cations throughout the microporous structure. The ultrathin BPH nanosheets exhibit high and regular intersheet mesoporosity, and substantially improved thermal stability. The notable mesoporosity bestows exceptional water adsorption behavior typically unseen for zeolites; the as-prepared material consists of up to 49% adsorbed H<sub>2</sub>O by weight and adsorbs up to 32 wt % H<sub>2</sub>O at 90% relative humidity. <sup>2</sup>H MAS NMR spectroscopy identifies different types of O<sup>2</sup>H environments ascribed to silanol species exhibiting two motion behaviors. H<sub>2</sub>O sorption analysis demonstrates reproducible behavior over multiple cycles and low temperature regeneration, making the ultrathin BPH nanosheets attractive candidates for gas drying and membrane applications.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01625\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01625","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

该研究报道了在温和的条件下完全使用无机结构引导剂从铝硅酸盐胶体悬浮液中合成超薄 BPH 沸石纳米片的过程。改进后的合成方法得到了 4-7 纳米的纳米片,硅/铝比率为 1.5;三维电子衍射和 DFT 计算相结合,揭示了框架外阳离子在整个微孔结构中的空间分布。超薄 BPH 纳米片具有较高且规则的片间介孔率,热稳定性大大提高。显著的介孔度赋予了沸石前所未有的吸水性能;按重量计,制备的材料可吸附高达 49% 的 H2O,在 90% 的相对湿度下可吸附高达 32 wt % 的 H2O。2H MAS NMR 光谱法确定了不同类型的 O2H 环境,这些环境归因于硅烷醇物种,表现出两种运动行为。对 H2O 的吸附分析表明,在多次循环和低温再生过程中,吸附行为具有可重复性,这使得超薄 BPH 纳米片成为气体干燥和膜应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrathin BPH Nanosheets with Exceptional Water Adsorption Properties

Ultrathin BPH Nanosheets with Exceptional Water Adsorption Properties

The synthesis of ultrathin BPH zeolite nanosheets from an aluminosilicate colloidal suspension using exclusively inorganic structure directing agents under mild conditions is reported. The improved synthesis yields nanosheets of 4–7 nm and a Si/Al ratio of 1.5; combined 3D electron diffraction and DFT calculations reveal the spatial distribution of extra-framework cations throughout the microporous structure. The ultrathin BPH nanosheets exhibit high and regular intersheet mesoporosity, and substantially improved thermal stability. The notable mesoporosity bestows exceptional water adsorption behavior typically unseen for zeolites; the as-prepared material consists of up to 49% adsorbed H2O by weight and adsorbs up to 32 wt % H2O at 90% relative humidity. 2H MAS NMR spectroscopy identifies different types of O2H environments ascribed to silanol species exhibiting two motion behaviors. H2O sorption analysis demonstrates reproducible behavior over multiple cycles and low temperature regeneration, making the ultrathin BPH nanosheets attractive candidates for gas drying and membrane applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信