Edwin B. Clatworthy*, Rémy Guillet-Nicolas, Philippe Boullay, Michael Badawi, Yann Foucaud, Eddy Dib, Nicolas Barrier, Arnold A. Paecklar, Maxime Debost, Sajjad Ghojavand, Jean-Pierre Gilson, Izabel Medeiros-Costa and Svetlana Mintova*,
{"title":"具有优异吸水性能的超薄 BPH 纳米片","authors":"Edwin B. Clatworthy*, Rémy Guillet-Nicolas, Philippe Boullay, Michael Badawi, Yann Foucaud, Eddy Dib, Nicolas Barrier, Arnold A. Paecklar, Maxime Debost, Sajjad Ghojavand, Jean-Pierre Gilson, Izabel Medeiros-Costa and Svetlana Mintova*, ","doi":"10.1021/acsmaterialslett.4c0162510.1021/acsmaterialslett.4c01625","DOIUrl":null,"url":null,"abstract":"<p >The synthesis of ultrathin BPH zeolite nanosheets from an aluminosilicate colloidal suspension using exclusively inorganic structure directing agents under mild conditions is reported. The improved synthesis yields nanosheets of 4–7 nm and a Si/Al ratio of 1.5; combined 3D electron diffraction and DFT calculations reveal the spatial distribution of extra-framework cations throughout the microporous structure. The ultrathin BPH nanosheets exhibit high and regular intersheet mesoporosity, and substantially improved thermal stability. The notable mesoporosity bestows exceptional water adsorption behavior typically unseen for zeolites; the as-prepared material consists of up to 49% adsorbed H<sub>2</sub>O by weight and adsorbs up to 32 wt % H<sub>2</sub>O at 90% relative humidity. <sup>2</sup>H MAS NMR spectroscopy identifies different types of O<sup>2</sup>H environments ascribed to silanol species exhibiting two motion behaviors. H<sub>2</sub>O sorption analysis demonstrates reproducible behavior over multiple cycles and low temperature regeneration, making the ultrathin BPH nanosheets attractive candidates for gas drying and membrane applications.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 10","pages":"4690–4696 4690–4696"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrathin BPH Nanosheets with Exceptional Water Adsorption Properties\",\"authors\":\"Edwin B. Clatworthy*, Rémy Guillet-Nicolas, Philippe Boullay, Michael Badawi, Yann Foucaud, Eddy Dib, Nicolas Barrier, Arnold A. Paecklar, Maxime Debost, Sajjad Ghojavand, Jean-Pierre Gilson, Izabel Medeiros-Costa and Svetlana Mintova*, \",\"doi\":\"10.1021/acsmaterialslett.4c0162510.1021/acsmaterialslett.4c01625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The synthesis of ultrathin BPH zeolite nanosheets from an aluminosilicate colloidal suspension using exclusively inorganic structure directing agents under mild conditions is reported. The improved synthesis yields nanosheets of 4–7 nm and a Si/Al ratio of 1.5; combined 3D electron diffraction and DFT calculations reveal the spatial distribution of extra-framework cations throughout the microporous structure. The ultrathin BPH nanosheets exhibit high and regular intersheet mesoporosity, and substantially improved thermal stability. The notable mesoporosity bestows exceptional water adsorption behavior typically unseen for zeolites; the as-prepared material consists of up to 49% adsorbed H<sub>2</sub>O by weight and adsorbs up to 32 wt % H<sub>2</sub>O at 90% relative humidity. <sup>2</sup>H MAS NMR spectroscopy identifies different types of O<sup>2</sup>H environments ascribed to silanol species exhibiting two motion behaviors. H<sub>2</sub>O sorption analysis demonstrates reproducible behavior over multiple cycles and low temperature regeneration, making the ultrathin BPH nanosheets attractive candidates for gas drying and membrane applications.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"6 10\",\"pages\":\"4690–4696 4690–4696\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01625\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01625","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrathin BPH Nanosheets with Exceptional Water Adsorption Properties
The synthesis of ultrathin BPH zeolite nanosheets from an aluminosilicate colloidal suspension using exclusively inorganic structure directing agents under mild conditions is reported. The improved synthesis yields nanosheets of 4–7 nm and a Si/Al ratio of 1.5; combined 3D electron diffraction and DFT calculations reveal the spatial distribution of extra-framework cations throughout the microporous structure. The ultrathin BPH nanosheets exhibit high and regular intersheet mesoporosity, and substantially improved thermal stability. The notable mesoporosity bestows exceptional water adsorption behavior typically unseen for zeolites; the as-prepared material consists of up to 49% adsorbed H2O by weight and adsorbs up to 32 wt % H2O at 90% relative humidity. 2H MAS NMR spectroscopy identifies different types of O2H environments ascribed to silanol species exhibiting two motion behaviors. H2O sorption analysis demonstrates reproducible behavior over multiple cycles and low temperature regeneration, making the ultrathin BPH nanosheets attractive candidates for gas drying and membrane applications.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.