基于柔性和刚性骨架的氢键主导型阴离子交换膜

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuyang Lu, Huimin Fan, Cuiwen Deng, Minhao Wang, Jia Wang, Zhongshan Feng, Yi Liu, Xiaorong Zhou*, Bencai Lin and Juanjuan Han*, 
{"title":"基于柔性和刚性骨架的氢键主导型阴离子交换膜","authors":"Yuyang Lu,&nbsp;Huimin Fan,&nbsp;Cuiwen Deng,&nbsp;Minhao Wang,&nbsp;Jia Wang,&nbsp;Zhongshan Feng,&nbsp;Yi Liu,&nbsp;Xiaorong Zhou*,&nbsp;Bencai Lin and Juanjuan Han*,&nbsp;","doi":"10.1021/acsapm.4c0218810.1021/acsapm.4c02188","DOIUrl":null,"url":null,"abstract":"<p >This work presents a synthesis strategy to yield DQPVB-EVOH anion-exchange membranes (AEMs) by grafting hydroxyl-containing bis-cationic side chains onto a rigid poly(4-vinylbenzyl chloride) (PVB) backbone (DQPVB) and blending it with a flexible ethylene vinyl alcohol copolymer (EVOH). The intermolecular hydrogen bonding between the hydroxyl groups on DQPVB side chains and those on flexible EVOH delivers good tensile strength (TS = 8.3–22.9 MPa), high elongation at break (EB = 94.9–218.5%), restricted swelling degree (SD = 12.0–42.7%), and high water uptake (WU = 106.8–311.2%) of the AEMs. The bis-cationic properties promote a high ion-exchange capacity (IEC = 2.77–4.01 mmol g<sup>–1</sup>) for DQPVB-EVOH AEMs, contributing to their improved ionic conductivity (IC = 51.3–89.3 mS cm<sup>–1</sup> at 80 °C). Additionally, the absence of polar groups on the PVB backbone, coupled with high water uptake, diminishes the nucleophilic attack ability of hydroxyl groups, resulting in good alkali stability for DQPVB-EVOH AEMs. (After soaking in 1 M KOH at 80 °C for 360 h, IEC retentions = 86.2–93.5% and IC retentions = 85.5–95.6%.) A H<sub>2</sub>/O<sub>2</sub> fuel cell based on the DQPVB-EVOH-0.5 AEM exhibits a maximum power density of 303.6 mW cm<sup>–2</sup>. In comparison, QPVB-EVOH-0.5, which is formulated by blending singly cationic-grafted quaternized PVB (QPVB) with EVOH, exhibits excessive swelling at 30 °C due to the lack of hydrogen bond cross-linking. It has a SD of up to 95.8% with an IEC of 2.36 mmol g<sup>–1</sup>, making it not feasible.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"6 19","pages":"12037–12048 12037–12048"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Bonding Dominated Anion-Exchange Membranes Based on Flexible and Rigid Backbones\",\"authors\":\"Yuyang Lu,&nbsp;Huimin Fan,&nbsp;Cuiwen Deng,&nbsp;Minhao Wang,&nbsp;Jia Wang,&nbsp;Zhongshan Feng,&nbsp;Yi Liu,&nbsp;Xiaorong Zhou*,&nbsp;Bencai Lin and Juanjuan Han*,&nbsp;\",\"doi\":\"10.1021/acsapm.4c0218810.1021/acsapm.4c02188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work presents a synthesis strategy to yield DQPVB-EVOH anion-exchange membranes (AEMs) by grafting hydroxyl-containing bis-cationic side chains onto a rigid poly(4-vinylbenzyl chloride) (PVB) backbone (DQPVB) and blending it with a flexible ethylene vinyl alcohol copolymer (EVOH). The intermolecular hydrogen bonding between the hydroxyl groups on DQPVB side chains and those on flexible EVOH delivers good tensile strength (TS = 8.3–22.9 MPa), high elongation at break (EB = 94.9–218.5%), restricted swelling degree (SD = 12.0–42.7%), and high water uptake (WU = 106.8–311.2%) of the AEMs. The bis-cationic properties promote a high ion-exchange capacity (IEC = 2.77–4.01 mmol g<sup>–1</sup>) for DQPVB-EVOH AEMs, contributing to their improved ionic conductivity (IC = 51.3–89.3 mS cm<sup>–1</sup> at 80 °C). Additionally, the absence of polar groups on the PVB backbone, coupled with high water uptake, diminishes the nucleophilic attack ability of hydroxyl groups, resulting in good alkali stability for DQPVB-EVOH AEMs. (After soaking in 1 M KOH at 80 °C for 360 h, IEC retentions = 86.2–93.5% and IC retentions = 85.5–95.6%.) A H<sub>2</sub>/O<sub>2</sub> fuel cell based on the DQPVB-EVOH-0.5 AEM exhibits a maximum power density of 303.6 mW cm<sup>–2</sup>. In comparison, QPVB-EVOH-0.5, which is formulated by blending singly cationic-grafted quaternized PVB (QPVB) with EVOH, exhibits excessive swelling at 30 °C due to the lack of hydrogen bond cross-linking. It has a SD of up to 95.8% with an IEC of 2.36 mmol g<sup>–1</sup>, making it not feasible.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"6 19\",\"pages\":\"12037–12048 12037–12048\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c02188\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c02188","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种合成 DQPVB-EVOH 阴离子交换膜(AEM)的策略,即在刚性聚(4-乙烯基苄基氯)(PVB)骨架(DQPVB)上接枝含羟基的双阳离子侧链,并将其与柔性乙烯-乙烯醇共聚物(EVOH)混合。DQPVB 侧链上的羟基与柔性乙烯-乙烯醇共聚物(EVOH)上的羟基之间的分子间氢键作用使 AEM 具有良好的拉伸强度(TS = 8.3-22.9 兆帕)、较高的断裂伸长率(EB = 94.9-218.5%)、有限的膨胀度(SD = 12.0-42.7%)和较高的吸水率(WU = 106.8-311.2%)。双阳离子特性使 DQPVB-EVOH AEMs 具有较高的离子交换能力(IEC = 2.77-4.01 mmol g-1),从而提高了离子传导性(IC = 51.3-89.3 mS cm-1,80 °C)。此外,由于 PVB 主干上没有极性基团,加上高吸水性,削弱了羟基的亲核攻击能力,从而使 DQPVB-EVOH AEM 具有良好的碱稳定性。(在 80 °C 的 1 M KOH 中浸泡 360 小时后,IEC 保留率 = 86.2-93.5%,IC 保留率 = 85.5-95.6%)。基于 DQPVB-EVOH-0.5 AEM 的 H2/O2 燃料电池的最大功率密度为 303.6 mW cm-2。相比之下,通过将单阳离子接枝季铵化 PVB (QPVB) 与 EVOH 混合配制而成的 QPVB-EVOH-0.5 由于缺乏氢键交联,在 30 °C 时会出现过度膨胀。它的 SD 值高达 95.8%,IEC 值为 2.36 mmol g-1,因此不可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogen Bonding Dominated Anion-Exchange Membranes Based on Flexible and Rigid Backbones

Hydrogen Bonding Dominated Anion-Exchange Membranes Based on Flexible and Rigid Backbones

This work presents a synthesis strategy to yield DQPVB-EVOH anion-exchange membranes (AEMs) by grafting hydroxyl-containing bis-cationic side chains onto a rigid poly(4-vinylbenzyl chloride) (PVB) backbone (DQPVB) and blending it with a flexible ethylene vinyl alcohol copolymer (EVOH). The intermolecular hydrogen bonding between the hydroxyl groups on DQPVB side chains and those on flexible EVOH delivers good tensile strength (TS = 8.3–22.9 MPa), high elongation at break (EB = 94.9–218.5%), restricted swelling degree (SD = 12.0–42.7%), and high water uptake (WU = 106.8–311.2%) of the AEMs. The bis-cationic properties promote a high ion-exchange capacity (IEC = 2.77–4.01 mmol g–1) for DQPVB-EVOH AEMs, contributing to their improved ionic conductivity (IC = 51.3–89.3 mS cm–1 at 80 °C). Additionally, the absence of polar groups on the PVB backbone, coupled with high water uptake, diminishes the nucleophilic attack ability of hydroxyl groups, resulting in good alkali stability for DQPVB-EVOH AEMs. (After soaking in 1 M KOH at 80 °C for 360 h, IEC retentions = 86.2–93.5% and IC retentions = 85.5–95.6%.) A H2/O2 fuel cell based on the DQPVB-EVOH-0.5 AEM exhibits a maximum power density of 303.6 mW cm–2. In comparison, QPVB-EVOH-0.5, which is formulated by blending singly cationic-grafted quaternized PVB (QPVB) with EVOH, exhibits excessive swelling at 30 °C due to the lack of hydrogen bond cross-linking. It has a SD of up to 95.8% with an IEC of 2.36 mmol g–1, making it not feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信