Lei Liu, Jiabin Qiu*, Zhenghui Xie, Chenxin Yang, Ting Huang, Yunjin Lu, Xinyi Zhang, Dongnai Ye and Shi-Yong Liu*,
{"title":"噻吩基-二苯基苯乙烯型有机光催化剂对高效氢气转化效果的比较研究","authors":"Lei Liu, Jiabin Qiu*, Zhenghui Xie, Chenxin Yang, Ting Huang, Yunjin Lu, Xinyi Zhang, Dongnai Ye and Shi-Yong Liu*, ","doi":"10.1021/acsapm.4c0195010.1021/acsapm.4c01950","DOIUrl":null,"url":null,"abstract":"<p >Donor–acceptor (D-A) type linear conjugated polymer is considered as a promising photocatalyst due to its facile adjustment of energy bands and spectral range. Herein, we designed a series of D-A linear conjugated polymers based on terthienyl-diphenylstyrene. The comparative effect was investigated via ultraviolet–visible (UV–vis), X-ray powder diffraction (XRD), transient photocurrent response (TPR), cyclic voltammetry (CV), etc. The results demonstrated that incorporating styryl building blocks into the acceptor moiety can efficaciously enhance the photocatalysis hydrogen production (PHP) activities, surpassing the effect of incorporating cyano substituents into the acceptor moiety. Among them, <b>BTT-PPAN</b> (<b>BTT</b> is 2,2′:5′,2″-terthiophene, <b>PPAN</b> is (2<i>Z</i>,2′<i>Z</i>)-3,3′-(1,4-phenylene)bis(2-phenylacrylonitrile)) exhibited an outstanding PHP rate (35.54 mmol g<sup>–1</sup> h<sup>–1</sup>). The terpolymers (<b>PPAN</b><sub><b><i>x</i></b></sub><b>PFN</b><sub><b><i>y</i></b></sub>; <b>PPAN</b> is (2<i>Z</i>,2′<i>Z</i>)-3,3′-(1,4-phenylene)bis(2-phenylacrylonitrile), <b>PFN</b> is 2,3-diphenylfumaronitrile) were subsequently constructed by changing the feed ratio of 2,3-<i>bis</i>(4-bromophenyl)fumaronitrile (<b>M3</b>) and (2<i>Z</i>,2′<i>Z</i>)-2,2′-(1,4-phenylene)<i>bis</i>(3-(4-bromophenyl)acrylonitrile) (<b>M4</b>) and polymerization with <b>BTT</b>. The investigation of terpolymers also demonstrates that the conjugation length plays a more critical role in the performance of PHP than the cyano substituent effect. The comparative impact result obtained in this investigation will provide an invaluable theoretical guideline for the future rational design of high PHP performance materials.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"6 19","pages":"11850–11858 11850–11858"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study on the Effect of Terthienyl-diphenylstyrene Type Organic Photocatalysts for Efficient Hydrogen Evolution\",\"authors\":\"Lei Liu, Jiabin Qiu*, Zhenghui Xie, Chenxin Yang, Ting Huang, Yunjin Lu, Xinyi Zhang, Dongnai Ye and Shi-Yong Liu*, \",\"doi\":\"10.1021/acsapm.4c0195010.1021/acsapm.4c01950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Donor–acceptor (D-A) type linear conjugated polymer is considered as a promising photocatalyst due to its facile adjustment of energy bands and spectral range. Herein, we designed a series of D-A linear conjugated polymers based on terthienyl-diphenylstyrene. The comparative effect was investigated via ultraviolet–visible (UV–vis), X-ray powder diffraction (XRD), transient photocurrent response (TPR), cyclic voltammetry (CV), etc. The results demonstrated that incorporating styryl building blocks into the acceptor moiety can efficaciously enhance the photocatalysis hydrogen production (PHP) activities, surpassing the effect of incorporating cyano substituents into the acceptor moiety. Among them, <b>BTT-PPAN</b> (<b>BTT</b> is 2,2′:5′,2″-terthiophene, <b>PPAN</b> is (2<i>Z</i>,2′<i>Z</i>)-3,3′-(1,4-phenylene)bis(2-phenylacrylonitrile)) exhibited an outstanding PHP rate (35.54 mmol g<sup>–1</sup> h<sup>–1</sup>). The terpolymers (<b>PPAN</b><sub><b><i>x</i></b></sub><b>PFN</b><sub><b><i>y</i></b></sub>; <b>PPAN</b> is (2<i>Z</i>,2′<i>Z</i>)-3,3′-(1,4-phenylene)bis(2-phenylacrylonitrile), <b>PFN</b> is 2,3-diphenylfumaronitrile) were subsequently constructed by changing the feed ratio of 2,3-<i>bis</i>(4-bromophenyl)fumaronitrile (<b>M3</b>) and (2<i>Z</i>,2′<i>Z</i>)-2,2′-(1,4-phenylene)<i>bis</i>(3-(4-bromophenyl)acrylonitrile) (<b>M4</b>) and polymerization with <b>BTT</b>. The investigation of terpolymers also demonstrates that the conjugation length plays a more critical role in the performance of PHP than the cyano substituent effect. The comparative impact result obtained in this investigation will provide an invaluable theoretical guideline for the future rational design of high PHP performance materials.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"6 19\",\"pages\":\"11850–11858 11850–11858\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c01950\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c01950","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative Study on the Effect of Terthienyl-diphenylstyrene Type Organic Photocatalysts for Efficient Hydrogen Evolution
Donor–acceptor (D-A) type linear conjugated polymer is considered as a promising photocatalyst due to its facile adjustment of energy bands and spectral range. Herein, we designed a series of D-A linear conjugated polymers based on terthienyl-diphenylstyrene. The comparative effect was investigated via ultraviolet–visible (UV–vis), X-ray powder diffraction (XRD), transient photocurrent response (TPR), cyclic voltammetry (CV), etc. The results demonstrated that incorporating styryl building blocks into the acceptor moiety can efficaciously enhance the photocatalysis hydrogen production (PHP) activities, surpassing the effect of incorporating cyano substituents into the acceptor moiety. Among them, BTT-PPAN (BTT is 2,2′:5′,2″-terthiophene, PPAN is (2Z,2′Z)-3,3′-(1,4-phenylene)bis(2-phenylacrylonitrile)) exhibited an outstanding PHP rate (35.54 mmol g–1 h–1). The terpolymers (PPANxPFNy; PPAN is (2Z,2′Z)-3,3′-(1,4-phenylene)bis(2-phenylacrylonitrile), PFN is 2,3-diphenylfumaronitrile) were subsequently constructed by changing the feed ratio of 2,3-bis(4-bromophenyl)fumaronitrile (M3) and (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(4-bromophenyl)acrylonitrile) (M4) and polymerization with BTT. The investigation of terpolymers also demonstrates that the conjugation length plays a more critical role in the performance of PHP than the cyano substituent effect. The comparative impact result obtained in this investigation will provide an invaluable theoretical guideline for the future rational design of high PHP performance materials.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.