Michal Ronovský, Olivia Dunseath, Tomáš Hrbek, Peter Kúš, Matija Gatalo, Shlomi Polani, Jan Kubát, Daniel Götz, Hridya Nedumkulam, Andrea Sartori, Enrico Petrucco, Francisco Ruiz-Zepeda, Nejc Hodnik, Alex Martinez Bonastre, Peter Strasser and Jakub Drnec*,
{"title":"膜电极组装过程中纳米合金催化剂降解的起源","authors":"Michal Ronovský, Olivia Dunseath, Tomáš Hrbek, Peter Kúš, Matija Gatalo, Shlomi Polani, Jan Kubát, Daniel Götz, Hridya Nedumkulam, Andrea Sartori, Enrico Petrucco, Francisco Ruiz-Zepeda, Nejc Hodnik, Alex Martinez Bonastre, Peter Strasser and Jakub Drnec*, ","doi":"10.1021/acsenergylett.4c0235010.1021/acsenergylett.4c02350","DOIUrl":null,"url":null,"abstract":"<p >Despite extensive efforts to reduce the costs of high-performance electrochemical devices, incorporating catalyst materials frequently falls short of achieving performance targets. Platinum alloys, known for their high oxygen reduction activity, exemplify this challenge due to integration difficulties. Here, we introduce an in situ X-ray diffraction approach to investigate structural changes in PtCo and PtNi catalysts during ink preparation. Contrary to previous assumptions that acidity is the main factor driving catalyst dissolution, our findings demonstrate that temperature plays a more critical role. Additionally, we observe rapid structural degradation during the hot-pressing of catalyst-coated membranes (CCMs), a critical yet often unavoidable processing step. These results indicate that significant catalyst deactivation can occur before operation, emphasizing the need for optimized fabrication processes. This study highlights the importance of refining ink formulation and processing protocols to fully leverage advanced materials in CCM-based energy conversion systems.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 10","pages":"5251–5258 5251–5258"},"PeriodicalIF":19.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origins of Nanoalloy Catalysts Degradation during Membrane Electrode Assembly Fabrication\",\"authors\":\"Michal Ronovský, Olivia Dunseath, Tomáš Hrbek, Peter Kúš, Matija Gatalo, Shlomi Polani, Jan Kubát, Daniel Götz, Hridya Nedumkulam, Andrea Sartori, Enrico Petrucco, Francisco Ruiz-Zepeda, Nejc Hodnik, Alex Martinez Bonastre, Peter Strasser and Jakub Drnec*, \",\"doi\":\"10.1021/acsenergylett.4c0235010.1021/acsenergylett.4c02350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Despite extensive efforts to reduce the costs of high-performance electrochemical devices, incorporating catalyst materials frequently falls short of achieving performance targets. Platinum alloys, known for their high oxygen reduction activity, exemplify this challenge due to integration difficulties. Here, we introduce an in situ X-ray diffraction approach to investigate structural changes in PtCo and PtNi catalysts during ink preparation. Contrary to previous assumptions that acidity is the main factor driving catalyst dissolution, our findings demonstrate that temperature plays a more critical role. Additionally, we observe rapid structural degradation during the hot-pressing of catalyst-coated membranes (CCMs), a critical yet often unavoidable processing step. These results indicate that significant catalyst deactivation can occur before operation, emphasizing the need for optimized fabrication processes. This study highlights the importance of refining ink formulation and processing protocols to fully leverage advanced materials in CCM-based energy conversion systems.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"9 10\",\"pages\":\"5251–5258 5251–5258\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02350\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02350","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
尽管为降低高性能电化学装置的成本做出了大量努力,但催化剂材料的集成往往无法实现性能目标。众所周知,铂合金具有很高的氧还原活性,但由于整合困难,铂合金也面临着这一挑战。在此,我们介绍了一种原位 X 射线衍射方法,用于研究铂钴和铂镍催化剂在油墨制备过程中的结构变化。与以往认为酸性是导致催化剂溶解的主要因素相反,我们的研究结果表明温度起着更为关键的作用。此外,我们还观察到催化剂涂层膜(CCM)在热压过程中的快速结构降解,这是一个关键但往往不可避免的加工步骤。这些结果表明,催化剂会在运行前发生严重失活,这就强调了优化制造工艺的必要性。这项研究强调了改进油墨配方和加工规程的重要性,以便在基于 CCM 的能源转换系统中充分利用先进材料。
Origins of Nanoalloy Catalysts Degradation during Membrane Electrode Assembly Fabrication
Despite extensive efforts to reduce the costs of high-performance electrochemical devices, incorporating catalyst materials frequently falls short of achieving performance targets. Platinum alloys, known for their high oxygen reduction activity, exemplify this challenge due to integration difficulties. Here, we introduce an in situ X-ray diffraction approach to investigate structural changes in PtCo and PtNi catalysts during ink preparation. Contrary to previous assumptions that acidity is the main factor driving catalyst dissolution, our findings demonstrate that temperature plays a more critical role. Additionally, we observe rapid structural degradation during the hot-pressing of catalyst-coated membranes (CCMs), a critical yet often unavoidable processing step. These results indicate that significant catalyst deactivation can occur before operation, emphasizing the need for optimized fabrication processes. This study highlights the importance of refining ink formulation and processing protocols to fully leverage advanced materials in CCM-based energy conversion systems.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.