Derek Conkle-Gutierrez, Bria M. Gorman, Nachiket Thosar, Afif Elghraoui, Samuel J. Modlin, Faramarz Valafar
{"title":"大范围的功能缺失突变暗示了对新的或重新设计的抗结核药物的原有抗药性。","authors":"Derek Conkle-Gutierrez, Bria M. Gorman, Nachiket Thosar, Afif Elghraoui, Samuel J. Modlin, Faramarz Valafar","doi":"10.1016/j.drup.2024.101156","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Five New or Repurposed Drugs (NRDs) were approved in the last decade for treatment of multi-drug resistant tuberculosis: bedaquiline, clofazimine, linezolid, delamanid, and pretomanid. Unfortunately, resistance to these drugs emerged faster than anticipated, potentially due to preexisting resistance in naïve strains. Previous investigations into the rapid emergence have mostly included short variants. For the first time, we utilize <em>de novo</em>-assembled genomes, and systematically include Structural Variations (SV) and heterogeneity to comprehensively study this rapid emergence. We show high prevalence of preexisting resistance, identify novel markers of resistance, and lay the foundation for preventing preexisting resistance in future drug development.</div></div><div><h3>Methods</h3><div>First, a systematic literature review revealed 313 NRD resistance variants in 13 genes. Next, 409 globally diverse clinical isolates collected prior to the drugs’ programmatic use (308 were multidrug resistant, 106 had <em>de novo</em> assembled genomes) were utilized to study the 13 genes comprehensively for conventional, structural, and heterogeneous variants.</div></div><div><h3>Findings</h3><div>We identified 5 previously reported and 67 novel putative NRD resistance variants. These variants were 2 promoter mutations (in 8/409 isolates), 13 frameshifts (21/409), 6 SVs (9/409), 35 heterogeneous frameshifts (32/409) and 11 heterogeneous SVs (12/106). Delamanid and pretomanid resistance mutations were most prevalent (48/409), while linezolid resistance mutations were least prevalent (8/409).</div></div><div><h3>Interpretation</h3><div>Preexisting mutations implicated in resistance to at least one NRD was highly prevalent (85/409, 21 %). This was mostly caused by loss-of-function mutations in genes responsible for prodrug activation and efflux pump regulation. These preexisting mutations may have emerged through a bet-hedging strategy, or through cross-resistance with non-tuberculosis drugs such as metronidazole. Future drugs that could be resisted through loss-of-function in non-essential genes may suffer from preexisting resistance. The methods used here for comprehensive preexisting resistance assessment (especially SVs and heterogeneity) may mitigate this risk during early-stage drug development.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101156"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widespread loss-of-function mutations implicating preexisting resistance to new or repurposed anti-tuberculosis drugs\",\"authors\":\"Derek Conkle-Gutierrez, Bria M. Gorman, Nachiket Thosar, Afif Elghraoui, Samuel J. Modlin, Faramarz Valafar\",\"doi\":\"10.1016/j.drup.2024.101156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Five New or Repurposed Drugs (NRDs) were approved in the last decade for treatment of multi-drug resistant tuberculosis: bedaquiline, clofazimine, linezolid, delamanid, and pretomanid. Unfortunately, resistance to these drugs emerged faster than anticipated, potentially due to preexisting resistance in naïve strains. Previous investigations into the rapid emergence have mostly included short variants. For the first time, we utilize <em>de novo</em>-assembled genomes, and systematically include Structural Variations (SV) and heterogeneity to comprehensively study this rapid emergence. We show high prevalence of preexisting resistance, identify novel markers of resistance, and lay the foundation for preventing preexisting resistance in future drug development.</div></div><div><h3>Methods</h3><div>First, a systematic literature review revealed 313 NRD resistance variants in 13 genes. Next, 409 globally diverse clinical isolates collected prior to the drugs’ programmatic use (308 were multidrug resistant, 106 had <em>de novo</em> assembled genomes) were utilized to study the 13 genes comprehensively for conventional, structural, and heterogeneous variants.</div></div><div><h3>Findings</h3><div>We identified 5 previously reported and 67 novel putative NRD resistance variants. These variants were 2 promoter mutations (in 8/409 isolates), 13 frameshifts (21/409), 6 SVs (9/409), 35 heterogeneous frameshifts (32/409) and 11 heterogeneous SVs (12/106). Delamanid and pretomanid resistance mutations were most prevalent (48/409), while linezolid resistance mutations were least prevalent (8/409).</div></div><div><h3>Interpretation</h3><div>Preexisting mutations implicated in resistance to at least one NRD was highly prevalent (85/409, 21 %). This was mostly caused by loss-of-function mutations in genes responsible for prodrug activation and efflux pump regulation. These preexisting mutations may have emerged through a bet-hedging strategy, or through cross-resistance with non-tuberculosis drugs such as metronidazole. Future drugs that could be resisted through loss-of-function in non-essential genes may suffer from preexisting resistance. The methods used here for comprehensive preexisting resistance assessment (especially SVs and heterogeneity) may mitigate this risk during early-stage drug development.</div></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"77 \",\"pages\":\"Article 101156\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1368764624001146\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1368764624001146","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Widespread loss-of-function mutations implicating preexisting resistance to new or repurposed anti-tuberculosis drugs
Background
Five New or Repurposed Drugs (NRDs) were approved in the last decade for treatment of multi-drug resistant tuberculosis: bedaquiline, clofazimine, linezolid, delamanid, and pretomanid. Unfortunately, resistance to these drugs emerged faster than anticipated, potentially due to preexisting resistance in naïve strains. Previous investigations into the rapid emergence have mostly included short variants. For the first time, we utilize de novo-assembled genomes, and systematically include Structural Variations (SV) and heterogeneity to comprehensively study this rapid emergence. We show high prevalence of preexisting resistance, identify novel markers of resistance, and lay the foundation for preventing preexisting resistance in future drug development.
Methods
First, a systematic literature review revealed 313 NRD resistance variants in 13 genes. Next, 409 globally diverse clinical isolates collected prior to the drugs’ programmatic use (308 were multidrug resistant, 106 had de novo assembled genomes) were utilized to study the 13 genes comprehensively for conventional, structural, and heterogeneous variants.
Findings
We identified 5 previously reported and 67 novel putative NRD resistance variants. These variants were 2 promoter mutations (in 8/409 isolates), 13 frameshifts (21/409), 6 SVs (9/409), 35 heterogeneous frameshifts (32/409) and 11 heterogeneous SVs (12/106). Delamanid and pretomanid resistance mutations were most prevalent (48/409), while linezolid resistance mutations were least prevalent (8/409).
Interpretation
Preexisting mutations implicated in resistance to at least one NRD was highly prevalent (85/409, 21 %). This was mostly caused by loss-of-function mutations in genes responsible for prodrug activation and efflux pump regulation. These preexisting mutations may have emerged through a bet-hedging strategy, or through cross-resistance with non-tuberculosis drugs such as metronidazole. Future drugs that could be resisted through loss-of-function in non-essential genes may suffer from preexisting resistance. The methods used here for comprehensive preexisting resistance assessment (especially SVs and heterogeneity) may mitigate this risk during early-stage drug development.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research