通过化学方法使各种组织和器官脱细胞。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tayebeh Sadat Tabatabai , Majid Salehi , Leila Rezakhani , Zohreh Arabpour , Ali R. Djalilian , Morteza Alizadeh
{"title":"通过化学方法使各种组织和器官脱细胞。","authors":"Tayebeh Sadat Tabatabai ,&nbsp;Majid Salehi ,&nbsp;Leila Rezakhani ,&nbsp;Zohreh Arabpour ,&nbsp;Ali R. Djalilian ,&nbsp;Morteza Alizadeh","doi":"10.1016/j.tice.2024.102573","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decellularization of various tissues and organs through chemical methods\",\"authors\":\"Tayebeh Sadat Tabatabai ,&nbsp;Majid Salehi ,&nbsp;Leila Rezakhani ,&nbsp;Zohreh Arabpour ,&nbsp;Ali R. Djalilian ,&nbsp;Morteza Alizadeh\",\"doi\":\"10.1016/j.tice.2024.102573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004081662400274X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004081662400274X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

过去 20 年间,由于对捐献器官和组织的需求不断增加,新的方法应运而生。这些方法包括体外组织工程和生产用于移植的再生生物材料等。将天然细胞外基质(ECM)作为生物活性生物材料应用于临床是一种独特的方法,被称为脱细胞技术。脱细胞是将细胞从细胞外基质中去除,同时保留其天然成分(包括结构性和功能性蛋白质以及糖胺聚糖)的过程。这可以通过物理、化学或生物过程来实现。脱细胞过程的结果是自然形成具有生物相容性和再生性的三维结构。减少移植部位的生物因子和抗原可降低不良反应的风险,包括炎症反应和免疫排斥反应。再生医学和组织工程应用可从脱细胞技术中获益,这种前景广阔的方法可提供一种保留细胞外基质的生物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decellularization of various tissues and organs through chemical methods
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信