Konan Ishida, Matthew Penner, Kenji Fukushima, Yoshihisa Yoshimi, Louis F L Wilson, Alberto Echevarría-Poza, Li Yu, Paul Dupree
{"title":"菊科植物和蔷薇科植物中葡萄糖甘露聚糖β-半乳糖基转移酶活性的趋同性。","authors":"Konan Ishida, Matthew Penner, Kenji Fukushima, Yoshihisa Yoshimi, Louis F L Wilson, Alberto Echevarría-Poza, Li Yu, Paul Dupree","doi":"10.1093/pcp/pcae118","DOIUrl":null,"url":null,"abstract":"<p><p>β-Galactoglucomannan (β-GGM) is a primary cell wall polysaccharide in rosids and asterids. The β-GGM polymer has a backbone of repeating β-(1,4)-glucosyl and mannosyl residues, usually with mono-α-(1,6)-galactosyl substitution or β-(1,2)-galactosyl α-galactosyl disaccharide side chains on the mannosyl residues. Mannan β-galactosyltransferases (MBGTs) are therefore required for β-GGM synthesis. The single MBGT identified so far, AtMBGT1, lies in glycosyltransferase family 47A subclade VII and was identified in Arabidopsis. However, despite the presence of β-GGM, an orthologous gene is absent in tomato (Solanum lycopersicum), a model asterid. In this study, we screened candidate MBGT genes from the tomato genome, functionally tested the activities of encoded proteins and identified the tomato MBGT (SlMBGT1) in GT47A-III. Interestingly therefore, AtMBGT1 and SlMBGT1 are located in different GT47A subclades. Furthermore, phylogenetic and glucomannan structural analysis from different species raised the possibility that various asterids possess conserved MBGTs in an asterid-specific subclade of GT47A-III, indicating that MBGT activity has been acquired convergently among asterids and rosids. The present study highlights the promiscuous emergence of donor and acceptor preference in GT47A enzymes. The independent acquisition of the activity also suggests an adaptive advantage for eudicots to acquire β-GGM β-galactosylation and hence also suggests that the disaccharide side chains are important for β-GGM function.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"2030-2039"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662442/pdf/","citationCount":"0","resultStr":"{\"title\":\"Convergent Emergence of Glucomannan β-Galactosyltransferase Activity in Asterids and Rosids.\",\"authors\":\"Konan Ishida, Matthew Penner, Kenji Fukushima, Yoshihisa Yoshimi, Louis F L Wilson, Alberto Echevarría-Poza, Li Yu, Paul Dupree\",\"doi\":\"10.1093/pcp/pcae118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-Galactoglucomannan (β-GGM) is a primary cell wall polysaccharide in rosids and asterids. The β-GGM polymer has a backbone of repeating β-(1,4)-glucosyl and mannosyl residues, usually with mono-α-(1,6)-galactosyl substitution or β-(1,2)-galactosyl α-galactosyl disaccharide side chains on the mannosyl residues. Mannan β-galactosyltransferases (MBGTs) are therefore required for β-GGM synthesis. The single MBGT identified so far, AtMBGT1, lies in glycosyltransferase family 47A subclade VII and was identified in Arabidopsis. However, despite the presence of β-GGM, an orthologous gene is absent in tomato (Solanum lycopersicum), a model asterid. In this study, we screened candidate MBGT genes from the tomato genome, functionally tested the activities of encoded proteins and identified the tomato MBGT (SlMBGT1) in GT47A-III. Interestingly therefore, AtMBGT1 and SlMBGT1 are located in different GT47A subclades. Furthermore, phylogenetic and glucomannan structural analysis from different species raised the possibility that various asterids possess conserved MBGTs in an asterid-specific subclade of GT47A-III, indicating that MBGT activity has been acquired convergently among asterids and rosids. The present study highlights the promiscuous emergence of donor and acceptor preference in GT47A enzymes. The independent acquisition of the activity also suggests an adaptive advantage for eudicots to acquire β-GGM β-galactosylation and hence also suggests that the disaccharide side chains are important for β-GGM function.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":\" \",\"pages\":\"2030-2039\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae118\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae118","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Convergent Emergence of Glucomannan β-Galactosyltransferase Activity in Asterids and Rosids.
β-Galactoglucomannan (β-GGM) is a primary cell wall polysaccharide in rosids and asterids. The β-GGM polymer has a backbone of repeating β-(1,4)-glucosyl and mannosyl residues, usually with mono-α-(1,6)-galactosyl substitution or β-(1,2)-galactosyl α-galactosyl disaccharide side chains on the mannosyl residues. Mannan β-galactosyltransferases (MBGTs) are therefore required for β-GGM synthesis. The single MBGT identified so far, AtMBGT1, lies in glycosyltransferase family 47A subclade VII and was identified in Arabidopsis. However, despite the presence of β-GGM, an orthologous gene is absent in tomato (Solanum lycopersicum), a model asterid. In this study, we screened candidate MBGT genes from the tomato genome, functionally tested the activities of encoded proteins and identified the tomato MBGT (SlMBGT1) in GT47A-III. Interestingly therefore, AtMBGT1 and SlMBGT1 are located in different GT47A subclades. Furthermore, phylogenetic and glucomannan structural analysis from different species raised the possibility that various asterids possess conserved MBGTs in an asterid-specific subclade of GT47A-III, indicating that MBGT activity has been acquired convergently among asterids and rosids. The present study highlights the promiscuous emergence of donor and acceptor preference in GT47A enzymes. The independent acquisition of the activity also suggests an adaptive advantage for eudicots to acquire β-GGM β-galactosylation and hence also suggests that the disaccharide side chains are important for β-GGM function.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.