Chengwei Liang, Fan Yang, Xiaobing Huang, Lijuan Zhang, Ying Wang
{"title":"深度学习帮助早期检测心电图信号中由高血压引发的心脏变化。","authors":"Chengwei Liang, Fan Yang, Xiaobing Huang, Lijuan Zhang, Ying Wang","doi":"10.1038/s41440-024-01938-7","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial hypertension is a major risk factor for cardiovascular diseases. While cardiac ultrasound is a typical way to diagnose hypertension-mediated heart change, it often fails to detect early subtle structural changes. Electrocardiogram(ECG) represents electrical activity of heart muscle, affected by the changes in heart's structure. It is crucial to explore whether ECG can capture slight signals of hypertension-mediated heart change. However, reading ECG records is complex and some signals are too subtle to be captured by cardiologist's visual inspection. In this study, we designed a deep learning model to predict hypertension on ECG signals and then to identify hypertension-associated ECG segments. From The First Affiliated Hospital of Xiamen University, we collected 210,120 10-s 12-lead ECGs using the FX-8322 manufactured by FUKUDA and 812 ECGs using the RAGE-12 manufactured by NALONG. We proposed a deep learning framework, including MML-Net, a multi-branch, multi-scale LSTM neural network to evaluate the potential of ECG signals to detect hypertension, and ECG-XAI, an ECG-oriented wave-alignment AI explanation pipeline to identify hypertension-associated ECG segments. MML-Net achieved an 82% recall and an 87% precision in the testing, and an 80% recall and an 82% precision in the independent testing. In contrast, experienced clinical cardiologists typically attain recall rates ranging from 30 to 50% by visual inspection. The experiments demonstrate that ECG signals are sensitive to slight changes in heart structure caused by hypertension. ECG-XAI detects that R-wave and P-wave are the hypertension-associated ECG segments. The proposed framework has the potential to facilitate early diagnosis of heart change.</p>","PeriodicalId":13029,"journal":{"name":"Hypertension Research","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning assists early-detection of hypertension-mediated heart change on ECG signals.\",\"authors\":\"Chengwei Liang, Fan Yang, Xiaobing Huang, Lijuan Zhang, Ying Wang\",\"doi\":\"10.1038/s41440-024-01938-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arterial hypertension is a major risk factor for cardiovascular diseases. While cardiac ultrasound is a typical way to diagnose hypertension-mediated heart change, it often fails to detect early subtle structural changes. Electrocardiogram(ECG) represents electrical activity of heart muscle, affected by the changes in heart's structure. It is crucial to explore whether ECG can capture slight signals of hypertension-mediated heart change. However, reading ECG records is complex and some signals are too subtle to be captured by cardiologist's visual inspection. In this study, we designed a deep learning model to predict hypertension on ECG signals and then to identify hypertension-associated ECG segments. From The First Affiliated Hospital of Xiamen University, we collected 210,120 10-s 12-lead ECGs using the FX-8322 manufactured by FUKUDA and 812 ECGs using the RAGE-12 manufactured by NALONG. We proposed a deep learning framework, including MML-Net, a multi-branch, multi-scale LSTM neural network to evaluate the potential of ECG signals to detect hypertension, and ECG-XAI, an ECG-oriented wave-alignment AI explanation pipeline to identify hypertension-associated ECG segments. MML-Net achieved an 82% recall and an 87% precision in the testing, and an 80% recall and an 82% precision in the independent testing. In contrast, experienced clinical cardiologists typically attain recall rates ranging from 30 to 50% by visual inspection. The experiments demonstrate that ECG signals are sensitive to slight changes in heart structure caused by hypertension. ECG-XAI detects that R-wave and P-wave are the hypertension-associated ECG segments. The proposed framework has the potential to facilitate early diagnosis of heart change.</p>\",\"PeriodicalId\":13029,\"journal\":{\"name\":\"Hypertension Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hypertension Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41440-024-01938-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypertension Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41440-024-01938-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Deep learning assists early-detection of hypertension-mediated heart change on ECG signals.
Arterial hypertension is a major risk factor for cardiovascular diseases. While cardiac ultrasound is a typical way to diagnose hypertension-mediated heart change, it often fails to detect early subtle structural changes. Electrocardiogram(ECG) represents electrical activity of heart muscle, affected by the changes in heart's structure. It is crucial to explore whether ECG can capture slight signals of hypertension-mediated heart change. However, reading ECG records is complex and some signals are too subtle to be captured by cardiologist's visual inspection. In this study, we designed a deep learning model to predict hypertension on ECG signals and then to identify hypertension-associated ECG segments. From The First Affiliated Hospital of Xiamen University, we collected 210,120 10-s 12-lead ECGs using the FX-8322 manufactured by FUKUDA and 812 ECGs using the RAGE-12 manufactured by NALONG. We proposed a deep learning framework, including MML-Net, a multi-branch, multi-scale LSTM neural network to evaluate the potential of ECG signals to detect hypertension, and ECG-XAI, an ECG-oriented wave-alignment AI explanation pipeline to identify hypertension-associated ECG segments. MML-Net achieved an 82% recall and an 87% precision in the testing, and an 80% recall and an 82% precision in the independent testing. In contrast, experienced clinical cardiologists typically attain recall rates ranging from 30 to 50% by visual inspection. The experiments demonstrate that ECG signals are sensitive to slight changes in heart structure caused by hypertension. ECG-XAI detects that R-wave and P-wave are the hypertension-associated ECG segments. The proposed framework has the potential to facilitate early diagnosis of heart change.
期刊介绍:
Hypertension Research is the official publication of the Japanese Society of Hypertension. The journal publishes papers reporting original clinical and experimental research that contribute to the advancement of knowledge in the field of hypertension and related cardiovascular diseases. The journal publishes Review Articles, Articles, Correspondence and Comments.