Kun Chen, Xiaojing Liu, Lin Song, Ying Wang, Jingwen Zhang, Yaxin Song, Haonan Zhuang, Jinling Shen, Jielin Yang, Chuantao Peng, Jinhong Zang, Qingli Yang, Day Li, Tanushree B Gupta, Dehua Guo, Zhaojie Li
{"title":"黄芩苷对 MRSA 和嗜麦芽血单胞菌氨苄西林耐药性的抗菌活性和影响","authors":"Kun Chen, Xiaojing Liu, Lin Song, Ying Wang, Jingwen Zhang, Yaxin Song, Haonan Zhuang, Jinling Shen, Jielin Yang, Chuantao Peng, Jinhong Zang, Qingli Yang, Day Li, Tanushree B Gupta, Dehua Guo, Zhaojie Li","doi":"10.1089/fpd.2024.0074","DOIUrl":null,"url":null,"abstract":"<p><p>The development of novel antibacterial agents from plant sources is emerging as a successful strategy to combat antibiotic resistance in pathogens. In this study, we systemically investigated the antibacterial activity and underlying mechanisms of baicalin against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and <i>Stenotrophomonas maltophilia</i>. Our results showed that baicalin effectively restrained bacterial proliferation, compromised the integrity of cellular membranes, increased membrane permeability, and triggered oxidative stress within bacteria. Transcriptome profiling revealed that baicalin disrupted numerous biological pathways related to antibiotic resistance, biofilm formation, cellular membrane permeability, bacterial virulence, and so on. Furthermore, baicalin demonstrated a synergistic antibacterial effect when combined with ampicillin against both MRSA and <i>S</i>. <i>maltophilia</i>. In conclusion, baicalin proves to be a potent antibacterial agent with significant potential for addressing the challenge of antibiotic resistance in pathogens.</p>","PeriodicalId":12333,"journal":{"name":"Foodborne pathogens and disease","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Antibacterial Activities and Effects of Baicalin on Ampicillin Resistance of MRSA and <i>Stenotrophomonas maltophilia</i>.\",\"authors\":\"Kun Chen, Xiaojing Liu, Lin Song, Ying Wang, Jingwen Zhang, Yaxin Song, Haonan Zhuang, Jinling Shen, Jielin Yang, Chuantao Peng, Jinhong Zang, Qingli Yang, Day Li, Tanushree B Gupta, Dehua Guo, Zhaojie Li\",\"doi\":\"10.1089/fpd.2024.0074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of novel antibacterial agents from plant sources is emerging as a successful strategy to combat antibiotic resistance in pathogens. In this study, we systemically investigated the antibacterial activity and underlying mechanisms of baicalin against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and <i>Stenotrophomonas maltophilia</i>. Our results showed that baicalin effectively restrained bacterial proliferation, compromised the integrity of cellular membranes, increased membrane permeability, and triggered oxidative stress within bacteria. Transcriptome profiling revealed that baicalin disrupted numerous biological pathways related to antibiotic resistance, biofilm formation, cellular membrane permeability, bacterial virulence, and so on. Furthermore, baicalin demonstrated a synergistic antibacterial effect when combined with ampicillin against both MRSA and <i>S</i>. <i>maltophilia</i>. In conclusion, baicalin proves to be a potent antibacterial agent with significant potential for addressing the challenge of antibiotic resistance in pathogens.</p>\",\"PeriodicalId\":12333,\"journal\":{\"name\":\"Foodborne pathogens and disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foodborne pathogens and disease\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1089/fpd.2024.0074\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foodborne pathogens and disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/fpd.2024.0074","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Antibacterial Activities and Effects of Baicalin on Ampicillin Resistance of MRSA and Stenotrophomonas maltophilia.
The development of novel antibacterial agents from plant sources is emerging as a successful strategy to combat antibiotic resistance in pathogens. In this study, we systemically investigated the antibacterial activity and underlying mechanisms of baicalin against methicillin-resistant Staphylococcus aureus (MRSA) and Stenotrophomonas maltophilia. Our results showed that baicalin effectively restrained bacterial proliferation, compromised the integrity of cellular membranes, increased membrane permeability, and triggered oxidative stress within bacteria. Transcriptome profiling revealed that baicalin disrupted numerous biological pathways related to antibiotic resistance, biofilm formation, cellular membrane permeability, bacterial virulence, and so on. Furthermore, baicalin demonstrated a synergistic antibacterial effect when combined with ampicillin against both MRSA and S. maltophilia. In conclusion, baicalin proves to be a potent antibacterial agent with significant potential for addressing the challenge of antibiotic resistance in pathogens.
期刊介绍:
Foodborne Pathogens and Disease is one of the most inclusive scientific publications on the many disciplines that contribute to food safety. Spanning an array of issues from "farm-to-fork," the Journal bridges the gap between science and policy to reduce the burden of foodborne illness worldwide.
Foodborne Pathogens and Disease coverage includes:
Agroterrorism
Safety of organically grown and genetically modified foods
Emerging pathogens
Emergence of drug resistance
Methods and technology for rapid and accurate detection
Strategies to destroy or control foodborne pathogens
Novel strategies for the prevention and control of plant and animal diseases that impact food safety
Biosecurity issues and the implications of new regulatory guidelines
Impact of changing lifestyles and consumer demands on food safety.