揭示 Cr-Cu2O 纳米片阵列中亲氧 Cr4+ 在增强硝酸盐电还原成氨方面的双重作用

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kai Zhang, Bo Li, Fengchen Guo, Prof. Dr. Nigel Graham, Wenhui He, Prof. Dr. Wenzheng Yu
{"title":"揭示 Cr-Cu2O 纳米片阵列中亲氧 Cr4+ 在增强硝酸盐电还原成氨方面的双重作用","authors":"Kai Zhang,&nbsp;Bo Li,&nbsp;Fengchen Guo,&nbsp;Prof. Dr. Nigel Graham,&nbsp;Wenhui He,&nbsp;Prof. Dr. Wenzheng Yu","doi":"10.1002/anie.202411796","DOIUrl":null,"url":null,"abstract":"<p>Cuprous oxide (Cu<sub>2</sub>O)-based catalysts present a promising activity for the electrochemical nitrate (NO<sub>3</sub><sup>−</sup>) reduction to ammonia (eNO<sub>3</sub>RA), but the electrochemical instability of Cu<sup>+</sup> species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu<sup>+</sup> through the incorporation of Cr<sup>4+</sup> into the Cu<sub>2</sub>O matrix to construct a Cr<sup>4+</sup>−O−Cu<sup>+</sup> network structure. In situ and quasi-in situ characterizations reveal that the Cu<sup>+</sup> species are well maintained via the strong Cr<sup>4+</sup>−O−Cu<sup>+</sup> interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr<sup>3+</sup>−O−Cu<sup>+</sup> from Cr<sup>4+</sup>−O−Cu<sup>+</sup> is identified as a dual-active site for eNO<sub>3</sub>RA, wherein the Cu<sup>+</sup> sites are responsible for the activation of N-containing intermediates, while the assisting Cr<sup>3+</sup> centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr<sup>3+</sup>−O−Cu<sup>+</sup> favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH<sub>3</sub> desorption with a low energy barrier. The superior eNO<sub>3</sub>RA with a maximum 91.6 % Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH<sub>3</sub> production and sulfur recovery with reduced energy input.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Dual Role of Oxophilic Cr4+ in Cr−Cu2O Nanosheet Arrays for Enhanced Nitrate Electroreduction to Ammonia\",\"authors\":\"Kai Zhang,&nbsp;Bo Li,&nbsp;Fengchen Guo,&nbsp;Prof. Dr. Nigel Graham,&nbsp;Wenhui He,&nbsp;Prof. Dr. Wenzheng Yu\",\"doi\":\"10.1002/anie.202411796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cuprous oxide (Cu<sub>2</sub>O)-based catalysts present a promising activity for the electrochemical nitrate (NO<sub>3</sub><sup>−</sup>) reduction to ammonia (eNO<sub>3</sub>RA), but the electrochemical instability of Cu<sup>+</sup> species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu<sup>+</sup> through the incorporation of Cr<sup>4+</sup> into the Cu<sub>2</sub>O matrix to construct a Cr<sup>4+</sup>−O−Cu<sup>+</sup> network structure. In situ and quasi-in situ characterizations reveal that the Cu<sup>+</sup> species are well maintained via the strong Cr<sup>4+</sup>−O−Cu<sup>+</sup> interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr<sup>3+</sup>−O−Cu<sup>+</sup> from Cr<sup>4+</sup>−O−Cu<sup>+</sup> is identified as a dual-active site for eNO<sub>3</sub>RA, wherein the Cu<sup>+</sup> sites are responsible for the activation of N-containing intermediates, while the assisting Cr<sup>3+</sup> centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr<sup>3+</sup>−O−Cu<sup>+</sup> favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH<sub>3</sub> desorption with a low energy barrier. The superior eNO<sub>3</sub>RA with a maximum 91.6 % Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH<sub>3</sub> production and sulfur recovery with reduced energy input.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"63 52\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202411796\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202411796","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于氧化亚铜(Cu2O)的催化剂在电化学将硝酸盐(NO3-)还原为氨气(eNO3RA)的过程中具有良好的活性,但 Cu+ 物种的电化学不稳定性可能会导致催化剂的耐久性不尽如人意,从而阻碍了对结构-性能关系的探索。在此,我们提出了一种通过在 Cu2O 基体中加入 Cr4+ 构建 Cr4+-O-Cu+ 网络结构来稳定 Cu+ 的有效策略。原位和准原位特性分析表明,Cu+物种通过Cr4+-O-Cu+的强相互作用得到了很好的维持,从而抑制了晶格氧的沥滤。重要的是,从 Cr4+-O-Cu+ 原位生成的 Cr3+-O-Cu+ 被确定为 eNO3RA 的双重活性位点,其中 Cu+ 位点负责激活含 N 中间体,而辅助 Cr3+ 中心则作为电子质子介质促进水的快速解离。理论研究进一步证明,蜕变态 Cr3+-O-Cu+ 有利于将关键 *ON 中间体的内能氢化转化为 ONH 途径中的外能反应,并以较低的能障促进随后的 NH3 解吸。卓越的 eNO3RA(法拉第效率最高可达 91.6%)还可与阳极硫氧化反应相结合,在减少能量输入的同时实现 NH3 生产和硫回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the Dual Role of Oxophilic Cr4+ in Cr−Cu2O Nanosheet Arrays for Enhanced Nitrate Electroreduction to Ammonia

Cuprous oxide (Cu2O)-based catalysts present a promising activity for the electrochemical nitrate (NO3) reduction to ammonia (eNO3RA), but the electrochemical instability of Cu+ species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu+ through the incorporation of Cr4+ into the Cu2O matrix to construct a Cr4+−O−Cu+ network structure. In situ and quasi-in situ characterizations reveal that the Cu+ species are well maintained via the strong Cr4+−O−Cu+ interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr3+−O−Cu+ from Cr4+−O−Cu+ is identified as a dual-active site for eNO3RA, wherein the Cu+ sites are responsible for the activation of N-containing intermediates, while the assisting Cr3+ centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr3+−O−Cu+ favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH3 desorption with a low energy barrier. The superior eNO3RA with a maximum 91.6 % Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH3 production and sulfur recovery with reduced energy input.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信