揭示 Cu2MnS2 纳米片填料 rGO 在碱性介质中进行氧进化反应的电催化行为。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Langmuir Pub Date : 2024-10-22 Epub Date: 2024-10-11 DOI:10.1021/acs.langmuir.4c02824
Harshini Sharan, Jayachandran Madhavan, Ganeshbabu Mariappan, Ramakrishnan Kalai Selvan, Alagiri Mani
{"title":"揭示 Cu2MnS2 纳米片填料 rGO 在碱性介质中进行氧进化反应的电催化行为。","authors":"Harshini Sharan, Jayachandran Madhavan, Ganeshbabu Mariappan, Ramakrishnan Kalai Selvan, Alagiri Mani","doi":"10.1021/acs.langmuir.4c02824","DOIUrl":null,"url":null,"abstract":"<p><p>A catalyst of the oxygen evolution reaction (OER) that is viable, affordable, and active for effective water-splitting applications is critical. A variety of electrocatalysts have been discovered to replace noble metal-based catalysts. Of these, transition metal-based sulfides are essential for incorporating carbonaceous materials to improve electrical conductivity, resulting in better electrocatalytic performance. Our study illustrates the synthesis of Cu<sub>2</sub>MnS<sub>2</sub> (CMS) nanoflakes and their different rGO composites (10 to 40 wt %) via a hydrothermal technique for an effective water oxidation reaction. The X-ray diffraction pattern reveals that the prepared Cu<sub>2</sub>MnS<sub>2</sub> nanoflakes exhibit a cubic crystal structure. The high-resolution scanning electron microscopy and the high resolution transmission electron microscopy images corroborate the formation of the nanoflake-like morphology of Cu<sub>2</sub>MnS<sub>2</sub> with the strong interaction of rGO. The selected area electron diffraction analysis pattern reveals a polycrystalline nature. The Fourier transform infrared spectrum shows the existence of a metal sulfur vibrational band at 590 cm<sup>-1</sup>, and Raman analysis infers the presence of rGO. The X-ray photoelectron spectroscopy spectra reveal the oxidation states of the elements present in the samples. Using Brunauer-Emmett-Teller analysis, the surface area of CMS-20 is found to be 117.04 m<sup>2</sup>/g. The measured OER overpotentials using linear sweep volammetry and the values are 380, 370, 340, 376, and 400 mV at 10 mA/cm<sup>2</sup> for CMS, CMS-10, CMS-20, CMS-30, and CMS-40, respectively, and the corresponding Tafel slope values are 179, 158, 149, 206, and 240 mV/decade, respectively. The electrochemical active surface area is estimated using cyclic voltammetry for all of the catalysts, where CMS-20 showed a larger surface area. Also, the same catalyst exhibits good stability for ∼24 h at a constant potential, which is confirmed via chronoamperometry. Thus, combining transition metal-based sulfides with carbonaceous materials indicates improved catalytic behavior for the preparation of high-performance OER electrocatalysts. Overall, the prepared CMS-20 performed as an efficient OER electrocatalyst and can be utilized for practical applications in energy conversion.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"22230-22244"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Electrocatalytic Behavior of Cu<sub>2</sub>MnS<sub>2</sub> Nanoflake-Anchored rGO for the Oxygen Evolution Reaction in an Alkaline Medium.\",\"authors\":\"Harshini Sharan, Jayachandran Madhavan, Ganeshbabu Mariappan, Ramakrishnan Kalai Selvan, Alagiri Mani\",\"doi\":\"10.1021/acs.langmuir.4c02824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A catalyst of the oxygen evolution reaction (OER) that is viable, affordable, and active for effective water-splitting applications is critical. A variety of electrocatalysts have been discovered to replace noble metal-based catalysts. Of these, transition metal-based sulfides are essential for incorporating carbonaceous materials to improve electrical conductivity, resulting in better electrocatalytic performance. Our study illustrates the synthesis of Cu<sub>2</sub>MnS<sub>2</sub> (CMS) nanoflakes and their different rGO composites (10 to 40 wt %) via a hydrothermal technique for an effective water oxidation reaction. The X-ray diffraction pattern reveals that the prepared Cu<sub>2</sub>MnS<sub>2</sub> nanoflakes exhibit a cubic crystal structure. The high-resolution scanning electron microscopy and the high resolution transmission electron microscopy images corroborate the formation of the nanoflake-like morphology of Cu<sub>2</sub>MnS<sub>2</sub> with the strong interaction of rGO. The selected area electron diffraction analysis pattern reveals a polycrystalline nature. The Fourier transform infrared spectrum shows the existence of a metal sulfur vibrational band at 590 cm<sup>-1</sup>, and Raman analysis infers the presence of rGO. The X-ray photoelectron spectroscopy spectra reveal the oxidation states of the elements present in the samples. Using Brunauer-Emmett-Teller analysis, the surface area of CMS-20 is found to be 117.04 m<sup>2</sup>/g. The measured OER overpotentials using linear sweep volammetry and the values are 380, 370, 340, 376, and 400 mV at 10 mA/cm<sup>2</sup> for CMS, CMS-10, CMS-20, CMS-30, and CMS-40, respectively, and the corresponding Tafel slope values are 179, 158, 149, 206, and 240 mV/decade, respectively. The electrochemical active surface area is estimated using cyclic voltammetry for all of the catalysts, where CMS-20 showed a larger surface area. Also, the same catalyst exhibits good stability for ∼24 h at a constant potential, which is confirmed via chronoamperometry. Thus, combining transition metal-based sulfides with carbonaceous materials indicates improved catalytic behavior for the preparation of high-performance OER electrocatalysts. Overall, the prepared CMS-20 performed as an efficient OER electrocatalyst and can be utilized for practical applications in energy conversion.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"22230-22244\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02824\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02824","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于有效的水分离应用而言,一种可行、经济、活跃的氧进化反应(OER)催化剂至关重要。目前已发现多种电催化剂可替代贵金属催化剂。其中,过渡金属硫化物对于加入碳质材料以改善导电性,从而提高电催化性能至关重要。我们的研究通过水热技术合成了 Cu2MnS2(CMS)纳米片及其不同的 rGO 复合材料(10 至 40 wt %),用于有效的水氧化反应。X 射线衍射图显示制备的 Cu2MnS2 纳米片呈现立方晶体结构。高分辨率扫描电子显微镜和高分辨率透射电子显微镜图像证实了 Cu2MnS2 纳米片状形貌的形成与 rGO 的强相互作用。选区电子衍射分析图显示了其多晶性质。傅立叶变换红外光谱显示在 590 cm-1 处存在金属硫振动带,拉曼分析推断出 rGO 的存在。X 射线光电子能谱光谱显示了样品中元素的氧化态。通过布鲁瑙尔-埃美特-泰勒分析,发现 CMS-20 的表面积为 117.04 平方米/克。使用线性扫描伏安法测得的 OER 过电位,在 10 mA/cm2 条件下,CMS、CMS-10、CMS-20、CMS-30 和 CMS-40 的值分别为 380、370、340、376 和 400 mV,相应的 Tafel 斜坡值分别为 179、158、149、206 和 240 mV/decade。使用循环伏安法估算了所有催化剂的电化学活性表面积,其中 CMS-20 的表面积较大。此外,同一种催化剂在恒定电位下可保持 24 小时以上的良好稳定性,这一点已通过时变仪得到证实。因此,将过渡金属硫化物与碳质材料结合在一起可改善催化性能,从而制备出高性能的 OER 电催化剂。总之,制备的 CMS-20 是一种高效的 OER 电催化剂,可用于能源转换领域的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking the Electrocatalytic Behavior of Cu<sub>2</sub>MnS<sub>2</sub> Nanoflake-Anchored rGO for the Oxygen Evolution Reaction in an Alkaline Medium.

Unlocking the Electrocatalytic Behavior of Cu2MnS2 Nanoflake-Anchored rGO for the Oxygen Evolution Reaction in an Alkaline Medium.

A catalyst of the oxygen evolution reaction (OER) that is viable, affordable, and active for effective water-splitting applications is critical. A variety of electrocatalysts have been discovered to replace noble metal-based catalysts. Of these, transition metal-based sulfides are essential for incorporating carbonaceous materials to improve electrical conductivity, resulting in better electrocatalytic performance. Our study illustrates the synthesis of Cu2MnS2 (CMS) nanoflakes and their different rGO composites (10 to 40 wt %) via a hydrothermal technique for an effective water oxidation reaction. The X-ray diffraction pattern reveals that the prepared Cu2MnS2 nanoflakes exhibit a cubic crystal structure. The high-resolution scanning electron microscopy and the high resolution transmission electron microscopy images corroborate the formation of the nanoflake-like morphology of Cu2MnS2 with the strong interaction of rGO. The selected area electron diffraction analysis pattern reveals a polycrystalline nature. The Fourier transform infrared spectrum shows the existence of a metal sulfur vibrational band at 590 cm-1, and Raman analysis infers the presence of rGO. The X-ray photoelectron spectroscopy spectra reveal the oxidation states of the elements present in the samples. Using Brunauer-Emmett-Teller analysis, the surface area of CMS-20 is found to be 117.04 m2/g. The measured OER overpotentials using linear sweep volammetry and the values are 380, 370, 340, 376, and 400 mV at 10 mA/cm2 for CMS, CMS-10, CMS-20, CMS-30, and CMS-40, respectively, and the corresponding Tafel slope values are 179, 158, 149, 206, and 240 mV/decade, respectively. The electrochemical active surface area is estimated using cyclic voltammetry for all of the catalysts, where CMS-20 showed a larger surface area. Also, the same catalyst exhibits good stability for ∼24 h at a constant potential, which is confirmed via chronoamperometry. Thus, combining transition metal-based sulfides with carbonaceous materials indicates improved catalytic behavior for the preparation of high-performance OER electrocatalysts. Overall, the prepared CMS-20 performed as an efficient OER electrocatalyst and can be utilized for practical applications in energy conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信