Ankush Chakraborty, Bardia Soltanzadeh, Nicholas R. Wills, Arvind Jaganathan, Babak Borhan
{"title":"N-Bromo 和 N-Iodo 亚胺的合成:快速氧化还原中性和工作台稳定工艺","authors":"Ankush Chakraborty, Bardia Soltanzadeh, Nicholas R. Wills, Arvind Jaganathan, Babak Borhan","doi":"10.1021/acs.oprd.4c00194","DOIUrl":null,"url":null,"abstract":"This report presents a rapid, ecofriendly technique for the formation of commonly used <i>N</i>-bromo and <i>N</i>-iodinating reagents by reacting readily available <i>N</i>-chloro derivatives with inorganic bromide and iodide salts. All reagents were easily handled, commercially available, and bench stable. This strategy illustrates the expeditious formation of these halogenating reagents in multigram scale in high-yields and purity with an operationally straightforward recrystallization. The mechanistic details suggest an in situ generation of an interhalogen species.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of N-Bromo and N-Iodo Imides: A Rapid Redox-Neutral and Bench Stable Process\",\"authors\":\"Ankush Chakraborty, Bardia Soltanzadeh, Nicholas R. Wills, Arvind Jaganathan, Babak Borhan\",\"doi\":\"10.1021/acs.oprd.4c00194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report presents a rapid, ecofriendly technique for the formation of commonly used <i>N</i>-bromo and <i>N</i>-iodinating reagents by reacting readily available <i>N</i>-chloro derivatives with inorganic bromide and iodide salts. All reagents were easily handled, commercially available, and bench stable. This strategy illustrates the expeditious formation of these halogenating reagents in multigram scale in high-yields and purity with an operationally straightforward recrystallization. The mechanistic details suggest an in situ generation of an interhalogen species.\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.oprd.4c00194\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00194","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synthesis of N-Bromo and N-Iodo Imides: A Rapid Redox-Neutral and Bench Stable Process
This report presents a rapid, ecofriendly technique for the formation of commonly used N-bromo and N-iodinating reagents by reacting readily available N-chloro derivatives with inorganic bromide and iodide salts. All reagents were easily handled, commercially available, and bench stable. This strategy illustrates the expeditious formation of these halogenating reagents in multigram scale in high-yields and purity with an operationally straightforward recrystallization. The mechanistic details suggest an in situ generation of an interhalogen species.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.