以阴离子为媒介快速直接合成 FeNiOOH 以实现稳定的水氧化作用

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianhang Nie, Jinghui Shi, Lei Li, Meng-Yuan Xie, Zhen-Yang Ouyang, Ming-Hua Xian, Gui-Fang Huang, Hui Wan, Wangyu Hu, Wei-Qing Huang
{"title":"以阴离子为媒介快速直接合成 FeNiOOH 以实现稳定的水氧化作用","authors":"Jianhang Nie, Jinghui Shi, Lei Li, Meng-Yuan Xie, Zhen-Yang Ouyang, Ming-Hua Xian, Gui-Fang Huang, Hui Wan, Wangyu Hu, Wei-Qing Huang","doi":"10.1002/adfm.202414493","DOIUrl":null,"url":null,"abstract":"FeNiOOH is regarded as the most stable active species in the oxygen evolution reaction (OER), but the high oxidation energy of NiOOH poses a challenge to directly synthesize FeNiOOH as a real OER catalyst. Herein, an anion-mediated kinetically controlled strategy is proposed, coupled with cation-induced geometric topology modulation, to directly synthesis FeNiOOH with ultra-thin, densely packed nanosheet architectures. Specifically, the Cl<sup>−</sup>-mediated in situ generation of hypochlorous acid promotes the direct formation of NiFeOOH. Concurrently, high-valence competitive Ru<sup>3+</sup> mitigate electrostatic repulsion, fostering a compact and densely packed assembly of Ru/FeNiOOH nanosheet branches. Furthermore, the intrinsic electron-capturing ability of FeOOH, in synergy with the stabilizing effect of doped Ru atoms, further promote the formation and stabilization high-valence NiOOH. Consequently, the hierarchical Ru/FeNiOOH@NiPO<sub>x</sub> nanoarray catalyst displays exceptional OER performance, with an overpotential of 172 mV at 10 mA cm<sup>−2</sup> and outstanding stability. This study provides a novel strategy to directly construct a real catalyst.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"26 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anion-Mediated Rapid and Direct Synthesis of FeNiOOH for Robust Water Oxidation\",\"authors\":\"Jianhang Nie, Jinghui Shi, Lei Li, Meng-Yuan Xie, Zhen-Yang Ouyang, Ming-Hua Xian, Gui-Fang Huang, Hui Wan, Wangyu Hu, Wei-Qing Huang\",\"doi\":\"10.1002/adfm.202414493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FeNiOOH is regarded as the most stable active species in the oxygen evolution reaction (OER), but the high oxidation energy of NiOOH poses a challenge to directly synthesize FeNiOOH as a real OER catalyst. Herein, an anion-mediated kinetically controlled strategy is proposed, coupled with cation-induced geometric topology modulation, to directly synthesis FeNiOOH with ultra-thin, densely packed nanosheet architectures. Specifically, the Cl<sup>−</sup>-mediated in situ generation of hypochlorous acid promotes the direct formation of NiFeOOH. Concurrently, high-valence competitive Ru<sup>3+</sup> mitigate electrostatic repulsion, fostering a compact and densely packed assembly of Ru/FeNiOOH nanosheet branches. Furthermore, the intrinsic electron-capturing ability of FeOOH, in synergy with the stabilizing effect of doped Ru atoms, further promote the formation and stabilization high-valence NiOOH. Consequently, the hierarchical Ru/FeNiOOH@NiPO<sub>x</sub> nanoarray catalyst displays exceptional OER performance, with an overpotential of 172 mV at 10 mA cm<sup>−2</sup> and outstanding stability. This study provides a novel strategy to directly construct a real catalyst.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202414493\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

FeNiOOH 被认为是氧进化反应(OER)中最稳定的活性物种,但 NiOOH 的高氧化能给直接合成真正的 OER 催化剂 FeNiOOH 带来了挑战。本文提出了一种阴离子介导的动力学控制策略,结合阳离子诱导的几何拓扑调制,直接合成具有超薄、致密纳米片结构的 FeNiOOH。具体来说,Cl 介导的次氯酸原位生成促进了 NiFeOOH 的直接形成。同时,高价位竞争性 Ru3+ 可减轻静电排斥,促进 Ru/FeNiOOH 纳米片分支的紧凑密集组装。此外,FeOOH 固有的电子捕获能力与掺杂 Ru 原子的稳定作用协同作用,进一步促进了高价位 NiOOH 的形成和稳定。因此,分层 Ru/FeNiOOH@NiPOx 纳米阵列催化剂显示出卓越的 OER 性能,在 10 mA cm-2 的过电位为 172 mV,并且具有出色的稳定性。这项研究为直接构建真正的催化剂提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anion-Mediated Rapid and Direct Synthesis of FeNiOOH for Robust Water Oxidation

Anion-Mediated Rapid and Direct Synthesis of FeNiOOH for Robust Water Oxidation
FeNiOOH is regarded as the most stable active species in the oxygen evolution reaction (OER), but the high oxidation energy of NiOOH poses a challenge to directly synthesize FeNiOOH as a real OER catalyst. Herein, an anion-mediated kinetically controlled strategy is proposed, coupled with cation-induced geometric topology modulation, to directly synthesis FeNiOOH with ultra-thin, densely packed nanosheet architectures. Specifically, the Cl-mediated in situ generation of hypochlorous acid promotes the direct formation of NiFeOOH. Concurrently, high-valence competitive Ru3+ mitigate electrostatic repulsion, fostering a compact and densely packed assembly of Ru/FeNiOOH nanosheet branches. Furthermore, the intrinsic electron-capturing ability of FeOOH, in synergy with the stabilizing effect of doped Ru atoms, further promote the formation and stabilization high-valence NiOOH. Consequently, the hierarchical Ru/FeNiOOH@NiPOx nanoarray catalyst displays exceptional OER performance, with an overpotential of 172 mV at 10 mA cm−2 and outstanding stability. This study provides a novel strategy to directly construct a real catalyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信