远距离联系中气候模式偏差的鉴证调查:厄尔尼诺/南方涛动与北部平流层极地涡旋之间的关系案例

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Xiaocen Shen, Marlene Kretschmer, Theodore G. Shepherd
{"title":"远距离联系中气候模式偏差的鉴证调查:厄尔尼诺/南方涛动与北部平流层极地涡旋之间的关系案例","authors":"Xiaocen Shen,&nbsp;Marlene Kretschmer,&nbsp;Theodore G. Shepherd","doi":"10.1029/2024JD041252","DOIUrl":null,"url":null,"abstract":"<p>Teleconnections are crucial in shaping climate variability and regional climate change. The fidelity of teleconnections in climate models is important for reliable climate projections. As the observed sample size is limited, scientific judgment is required when models disagree with observed teleconnections. We illustrate this using the example of the relationship between El Niño-Southern Oscillation (ENSO) and the northern stratospheric polar vortex (SPV), where the MIROC6 large ensemble exhibits an ENSO-SPV correlation opposite in sign to observations. Yet the model well captures the upward planetary-wave propagation pathway through which ENSO is known to affect the SPV. We show that the discrepancy arises from the model showing an additional linkage related to horizontal stratospheric wave propagation. Observations do not provide strong statistical evidence for or against the existence of this linkage. Thus, depending on the research purpose, a choice has to be made in how to use the model simulations. Under the assumption that the additional linkage is spurious, a physically-based bias adjustment is applied to the SPV, which effectively aligns the modeled ENSO-SPV relationship with the observations, and thereby removes the model-observations discrepancy in the surface air temperature response. However, if one believed that the additional linkage was genuine and was undersampled in the observations, a different approach could be taken. Our study emphasizes that caution is needed when concluding that a model is not suitable for studying teleconnections. We propose a forensic approach and argue that it helps to better understand model performance and utilize climate model data more effectively.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 19","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041252","citationCount":"0","resultStr":"{\"title\":\"A Forensic Investigation of Climate Model Biases in Teleconnections: The Case of the Relationship Between ENSO and the Northern Stratospheric Polar Vortex\",\"authors\":\"Xiaocen Shen,&nbsp;Marlene Kretschmer,&nbsp;Theodore G. Shepherd\",\"doi\":\"10.1029/2024JD041252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Teleconnections are crucial in shaping climate variability and regional climate change. The fidelity of teleconnections in climate models is important for reliable climate projections. As the observed sample size is limited, scientific judgment is required when models disagree with observed teleconnections. We illustrate this using the example of the relationship between El Niño-Southern Oscillation (ENSO) and the northern stratospheric polar vortex (SPV), where the MIROC6 large ensemble exhibits an ENSO-SPV correlation opposite in sign to observations. Yet the model well captures the upward planetary-wave propagation pathway through which ENSO is known to affect the SPV. We show that the discrepancy arises from the model showing an additional linkage related to horizontal stratospheric wave propagation. Observations do not provide strong statistical evidence for or against the existence of this linkage. Thus, depending on the research purpose, a choice has to be made in how to use the model simulations. Under the assumption that the additional linkage is spurious, a physically-based bias adjustment is applied to the SPV, which effectively aligns the modeled ENSO-SPV relationship with the observations, and thereby removes the model-observations discrepancy in the surface air temperature response. However, if one believed that the additional linkage was genuine and was undersampled in the observations, a different approach could be taken. Our study emphasizes that caution is needed when concluding that a model is not suitable for studying teleconnections. We propose a forensic approach and argue that it helps to better understand model performance and utilize climate model data more effectively.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"129 19\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041252\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041252\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041252","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

远缘联系对形成气候变异性和区域气候变化至关重要。气候模式中远缘联系的保真度对于可靠的气候预测非常重要。由于观测到的样本量有限,当模式与观测到的远缘联系不一致时,就需要科学判断。我们以厄尔尼诺-南方涛动(ENSO)和北部平流层极地涡旋(SPV)之间的关系为例进行说明,MIROC6 大集合显示 ENSO-SPV 的相关性与观测值的符号相反。然而,该模式很好地捕捉到了厄尔尼诺/南方涛动已知会影响 SPV 的行星波向上传播途径。我们的研究表明,这种差异是由于模式显示了与水平平流层波传播有关的额外联系。观测数据并没有提供有力的统计证据来证明或否定这种联系的存在。因此,根据研究目的,必须选择如何使用模式模拟。在假设额外联系是虚假的前提下,对 SPV 进行基于物理的偏差调整,可以有效地使厄尔尼诺/南方涛动-SPV 的模拟关系与观测值保持一致,从而消除模式与观测值在地表气温响应上的差异。但是,如果认为额外的联系是真实的,并且在观测中取样不足,则可以采取不同的方法。我们的研究强调,在断定一个模式不适合用于研究远距离联系时需要谨慎。我们提出了一种鉴证方法,认为它有助于更好地理解模式的性能,更有效地利用气候模式数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Forensic Investigation of Climate Model Biases in Teleconnections: The Case of the Relationship Between ENSO and the Northern Stratospheric Polar Vortex

A Forensic Investigation of Climate Model Biases in Teleconnections: The Case of the Relationship Between ENSO and the Northern Stratospheric Polar Vortex

Teleconnections are crucial in shaping climate variability and regional climate change. The fidelity of teleconnections in climate models is important for reliable climate projections. As the observed sample size is limited, scientific judgment is required when models disagree with observed teleconnections. We illustrate this using the example of the relationship between El Niño-Southern Oscillation (ENSO) and the northern stratospheric polar vortex (SPV), where the MIROC6 large ensemble exhibits an ENSO-SPV correlation opposite in sign to observations. Yet the model well captures the upward planetary-wave propagation pathway through which ENSO is known to affect the SPV. We show that the discrepancy arises from the model showing an additional linkage related to horizontal stratospheric wave propagation. Observations do not provide strong statistical evidence for or against the existence of this linkage. Thus, depending on the research purpose, a choice has to be made in how to use the model simulations. Under the assumption that the additional linkage is spurious, a physically-based bias adjustment is applied to the SPV, which effectively aligns the modeled ENSO-SPV relationship with the observations, and thereby removes the model-observations discrepancy in the surface air temperature response. However, if one believed that the additional linkage was genuine and was undersampled in the observations, a different approach could be taken. Our study emphasizes that caution is needed when concluding that a model is not suitable for studying teleconnections. We propose a forensic approach and argue that it helps to better understand model performance and utilize climate model data more effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信