Yanjun Chen, Miriam Gavriliuc, Yi Zeng, Shoujun Xu, Yuhong Wang
{"title":"封面专题:多重力谱分析揭示诱导核糖体框架转换的 EF-G 结构域 I 突变的异构效应(ChemBioChem 19/2024)","authors":"Yanjun Chen, Miriam Gavriliuc, Yi Zeng, Shoujun Xu, Yuhong Wang","doi":"10.1002/cbic.202481902","DOIUrl":null,"url":null,"abstract":"<p>Ribosomal translocation, catalyzed by elongation factor G (EF-G), is a critical step in protein synthesis during which the ribosome typically moves three nucleotides along the mRNA per cycle. Using a new technique of multiplexed super-resolution force spectroscopy, it is shown that two engineered EF-G mutants, with mutated residues located approximately 80 Angstroms away from the EF-G pivot point, induce the ribosome to translocate by only two nucleotides, resulting in “-1” frameshifting. The article 10.1002/cbic.202400130 by Shoujun Xu, Yuhong Wang, and provides unique insights into EF-G-catalyzed ribosomal motion with single-nucleotide resolution from both ends of the mRNA.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202481902","citationCount":"0","resultStr":"{\"title\":\"Cover Feature: Allosteric Effects of EF-G Domain I Mutations Inducing Ribosome Frameshifting Revealed by Multiplexed Force Spectroscopy (ChemBioChem 19/2024)\",\"authors\":\"Yanjun Chen, Miriam Gavriliuc, Yi Zeng, Shoujun Xu, Yuhong Wang\",\"doi\":\"10.1002/cbic.202481902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ribosomal translocation, catalyzed by elongation factor G (EF-G), is a critical step in protein synthesis during which the ribosome typically moves three nucleotides along the mRNA per cycle. Using a new technique of multiplexed super-resolution force spectroscopy, it is shown that two engineered EF-G mutants, with mutated residues located approximately 80 Angstroms away from the EF-G pivot point, induce the ribosome to translocate by only two nucleotides, resulting in “-1” frameshifting. The article 10.1002/cbic.202400130 by Shoujun Xu, Yuhong Wang, and provides unique insights into EF-G-catalyzed ribosomal motion with single-nucleotide resolution from both ends of the mRNA.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202481902\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202481902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202481902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Cover Feature: Allosteric Effects of EF-G Domain I Mutations Inducing Ribosome Frameshifting Revealed by Multiplexed Force Spectroscopy (ChemBioChem 19/2024)
Ribosomal translocation, catalyzed by elongation factor G (EF-G), is a critical step in protein synthesis during which the ribosome typically moves three nucleotides along the mRNA per cycle. Using a new technique of multiplexed super-resolution force spectroscopy, it is shown that two engineered EF-G mutants, with mutated residues located approximately 80 Angstroms away from the EF-G pivot point, induce the ribosome to translocate by only two nucleotides, resulting in “-1” frameshifting. The article 10.1002/cbic.202400130 by Shoujun Xu, Yuhong Wang, and provides unique insights into EF-G-catalyzed ribosomal motion with single-nucleotide resolution from both ends of the mRNA.