{"title":"北半球夏季青藏高原表面位势涡度准双周涛动的产生:2014 年案例研究","authors":"Danni Guo, Yimin Liu, Guoxiong Wu, Jiangyu Mao, Jilan Jiang, Yaoxian Yang","doi":"10.1029/2024JD041161","DOIUrl":null,"url":null,"abstract":"<p>The atmospheric circulation around the Tibetan Plateau (TP) exhibits a substantial 10–20-day quasi–biweekly oscillation (QBWO), profoundly impacting weather and climate locally and remotely. Understanding the factors influencing the generation of QBWO over the TP (QBWO<sub>TP</sub>) and its physical mechanism is crucial. This study has investigated the influence of multi–timescale and land–atmosphere interactions on the generation of the QBWO<sub>TP</sub> in surface potential vorticity (SPV), a valuable tool for characterizing the mechanical and thermal variabilities in mountain forcing, based on a 2014 case study. Results indicate that in the free atmosphere, the summer monsoon onset over the Bay of Bengal induces a northward shift in the westerly jet toward the TP, manifested as an increase in low-frequency zonal winds. This shift facilitates the propagation of wave trains, leading to atmospheric quasi–biweekly potential temperature anomalies (<i>θ</i><sub><i>a</i></sub>) over the TP through a multi-timescale interaction. Additionally, the TP's surface thermal forcing and arrival of wave trains trigger anomalous upward motion and increase cloud cover. The resultant decrease in net short-wave radiations and increase in net long-wave radiations contribute to variations in surface potential temperature (<i>θ</i><sub><i>s</i></sub>) over the TP. As <i>θ</i><sub><i>a</i></sub> and <i>θ</i><sub><i>s</i></sub> evolve, the difference between them enlarges, resulting in the generation of the SPV QBWO<sub>TP</sub>. Given the relationship between the QBWO<sub>TP</sub> and downstream rainfall, this study could provide novel insights into understanding and predicting downstream rainfall QBWO.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 19","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041161","citationCount":"0","resultStr":"{\"title\":\"Generation of the Quasi-Biweekly Oscillation in the Surface Potential Vorticity Over the Tibetan Plateau During Boreal Summer: A Case Study of 2014\",\"authors\":\"Danni Guo, Yimin Liu, Guoxiong Wu, Jiangyu Mao, Jilan Jiang, Yaoxian Yang\",\"doi\":\"10.1029/2024JD041161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The atmospheric circulation around the Tibetan Plateau (TP) exhibits a substantial 10–20-day quasi–biweekly oscillation (QBWO), profoundly impacting weather and climate locally and remotely. Understanding the factors influencing the generation of QBWO over the TP (QBWO<sub>TP</sub>) and its physical mechanism is crucial. This study has investigated the influence of multi–timescale and land–atmosphere interactions on the generation of the QBWO<sub>TP</sub> in surface potential vorticity (SPV), a valuable tool for characterizing the mechanical and thermal variabilities in mountain forcing, based on a 2014 case study. Results indicate that in the free atmosphere, the summer monsoon onset over the Bay of Bengal induces a northward shift in the westerly jet toward the TP, manifested as an increase in low-frequency zonal winds. This shift facilitates the propagation of wave trains, leading to atmospheric quasi–biweekly potential temperature anomalies (<i>θ</i><sub><i>a</i></sub>) over the TP through a multi-timescale interaction. Additionally, the TP's surface thermal forcing and arrival of wave trains trigger anomalous upward motion and increase cloud cover. The resultant decrease in net short-wave radiations and increase in net long-wave radiations contribute to variations in surface potential temperature (<i>θ</i><sub><i>s</i></sub>) over the TP. As <i>θ</i><sub><i>a</i></sub> and <i>θ</i><sub><i>s</i></sub> evolve, the difference between them enlarges, resulting in the generation of the SPV QBWO<sub>TP</sub>. Given the relationship between the QBWO<sub>TP</sub> and downstream rainfall, this study could provide novel insights into understanding and predicting downstream rainfall QBWO.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"129 19\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041161\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041161\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041161","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Generation of the Quasi-Biweekly Oscillation in the Surface Potential Vorticity Over the Tibetan Plateau During Boreal Summer: A Case Study of 2014
The atmospheric circulation around the Tibetan Plateau (TP) exhibits a substantial 10–20-day quasi–biweekly oscillation (QBWO), profoundly impacting weather and climate locally and remotely. Understanding the factors influencing the generation of QBWO over the TP (QBWOTP) and its physical mechanism is crucial. This study has investigated the influence of multi–timescale and land–atmosphere interactions on the generation of the QBWOTP in surface potential vorticity (SPV), a valuable tool for characterizing the mechanical and thermal variabilities in mountain forcing, based on a 2014 case study. Results indicate that in the free atmosphere, the summer monsoon onset over the Bay of Bengal induces a northward shift in the westerly jet toward the TP, manifested as an increase in low-frequency zonal winds. This shift facilitates the propagation of wave trains, leading to atmospheric quasi–biweekly potential temperature anomalies (θa) over the TP through a multi-timescale interaction. Additionally, the TP's surface thermal forcing and arrival of wave trains trigger anomalous upward motion and increase cloud cover. The resultant decrease in net short-wave radiations and increase in net long-wave radiations contribute to variations in surface potential temperature (θs) over the TP. As θa and θs evolve, the difference between them enlarges, resulting in the generation of the SPV QBWOTP. Given the relationship between the QBWOTP and downstream rainfall, this study could provide novel insights into understanding and predicting downstream rainfall QBWO.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.