Marta Belmonte, Pasquale Paolisso, Emanuele Gallinoro, Dario Tino Bertolone, Attilio Leone, Giuseppe Esposito, Serena Caglioni, Michele Mattia Viscusi, Konstantinos Bermpeis, Tatyana Storozhenko, Eric Wyffels, Joseph Bartunek, Jeroen Sonck, Carlos Collet, Daniele Andreini, Marc Vanderheyden, Martin Penicka, Emanuele Barbato
{"title":"通过冠状动脉计算机断层扫描血管造影术 (CCTA) 提高血管特异性心肌缺血的诊断准确性。","authors":"Marta Belmonte, Pasquale Paolisso, Emanuele Gallinoro, Dario Tino Bertolone, Attilio Leone, Giuseppe Esposito, Serena Caglioni, Michele Mattia Viscusi, Konstantinos Bermpeis, Tatyana Storozhenko, Eric Wyffels, Joseph Bartunek, Jeroen Sonck, Carlos Collet, Daniele Andreini, Marc Vanderheyden, Martin Penicka, Emanuele Barbato","doi":"10.1016/j.jcct.2024.09.015","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Discrepancies between stenosis severity assessed at coronary computed tomography angiography (CCTA) and ischemia might depend on vessel type. Coronary plaque features are associated with ischemia. Thus, we evaluated the vessel-specific correlation of CCTA-derived diameter stenosis (DS) and invasive fractional flow reserve (FFR) and explored whether integrating morphological plaque features stratified by vessel might increase the predictive yield in identifying vessel-specific ischemia.</p><p><strong>Methods: </strong>Observational cohort study including patients undergoing CCTA for suspected coronary artery disease, with at least one vessel with DS ≥ 50 % at CCTA, undergoing invasive coronary angiography and FFR. Plaque analysis was performed using validated semi-automated software. Coronary vessels were stratified in left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA). Per vessel independent predictors of ischemia among CCTA-derived anatomical and morphologic plaque features were tested at univariable and multivariable logistic regression analysis. The best cut-off to predict ischemia was determined by Youden's index. Ischemia was defined by FFR≤0.80.</p><p><strong>Results: </strong>The study population consisted of 192 patients, of whom 224 vessels (61 % LAD, 19 % LCX, 20 % RCA) had lesions with DS ≥ 50 % interrogated by FFR. Despite similar DS, the rate of FFR≤0.80 was higher in the LAD compared to LCX and RCA (67.2 % vs 43.2 % and 44.2 %, respectively, p = 0.018). A significant correlation between DS and FFR was observed only in LAD (p = 0.003). At multivariable analysis stratified by vessel, the vessel-specific independent predictors of positive FFR were percent atheroma volume (threshold>17 %) for LAD, non-calcified plaque volume (threshold >130 mm<sup>3</sup>) for LCX, and lumen volume (threshold <844 mm<sup>3</sup>) for RCA. Integrating DS and vessel-specific morphological plaque features significantly increased the predictive yield for ischemia compared to DS alone (AUC ranging from 0.51 to 0.63 to 0.76-0.80).</p><p><strong>Conclusions: </strong>Integrating DS and vessel-specific morphological plaque features significantly increased the predictive yield for vessel-specific ischemia compared to DS alone, potentially improving patients' referral to the catheterization laboratory.</p>","PeriodicalId":94071,"journal":{"name":"Journal of cardiovascular computed tomography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved diagnostic accuracy of vessel-specific myocardial ischemia by coronary computed tomography angiography (CCTA).\",\"authors\":\"Marta Belmonte, Pasquale Paolisso, Emanuele Gallinoro, Dario Tino Bertolone, Attilio Leone, Giuseppe Esposito, Serena Caglioni, Michele Mattia Viscusi, Konstantinos Bermpeis, Tatyana Storozhenko, Eric Wyffels, Joseph Bartunek, Jeroen Sonck, Carlos Collet, Daniele Andreini, Marc Vanderheyden, Martin Penicka, Emanuele Barbato\",\"doi\":\"10.1016/j.jcct.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Discrepancies between stenosis severity assessed at coronary computed tomography angiography (CCTA) and ischemia might depend on vessel type. Coronary plaque features are associated with ischemia. Thus, we evaluated the vessel-specific correlation of CCTA-derived diameter stenosis (DS) and invasive fractional flow reserve (FFR) and explored whether integrating morphological plaque features stratified by vessel might increase the predictive yield in identifying vessel-specific ischemia.</p><p><strong>Methods: </strong>Observational cohort study including patients undergoing CCTA for suspected coronary artery disease, with at least one vessel with DS ≥ 50 % at CCTA, undergoing invasive coronary angiography and FFR. Plaque analysis was performed using validated semi-automated software. Coronary vessels were stratified in left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA). Per vessel independent predictors of ischemia among CCTA-derived anatomical and morphologic plaque features were tested at univariable and multivariable logistic regression analysis. The best cut-off to predict ischemia was determined by Youden's index. Ischemia was defined by FFR≤0.80.</p><p><strong>Results: </strong>The study population consisted of 192 patients, of whom 224 vessels (61 % LAD, 19 % LCX, 20 % RCA) had lesions with DS ≥ 50 % interrogated by FFR. Despite similar DS, the rate of FFR≤0.80 was higher in the LAD compared to LCX and RCA (67.2 % vs 43.2 % and 44.2 %, respectively, p = 0.018). A significant correlation between DS and FFR was observed only in LAD (p = 0.003). At multivariable analysis stratified by vessel, the vessel-specific independent predictors of positive FFR were percent atheroma volume (threshold>17 %) for LAD, non-calcified plaque volume (threshold >130 mm<sup>3</sup>) for LCX, and lumen volume (threshold <844 mm<sup>3</sup>) for RCA. Integrating DS and vessel-specific morphological plaque features significantly increased the predictive yield for ischemia compared to DS alone (AUC ranging from 0.51 to 0.63 to 0.76-0.80).</p><p><strong>Conclusions: </strong>Integrating DS and vessel-specific morphological plaque features significantly increased the predictive yield for vessel-specific ischemia compared to DS alone, potentially improving patients' referral to the catheterization laboratory.</p>\",\"PeriodicalId\":94071,\"journal\":{\"name\":\"Journal of cardiovascular computed tomography\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cardiovascular computed tomography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcct.2024.09.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cardiovascular computed tomography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jcct.2024.09.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved diagnostic accuracy of vessel-specific myocardial ischemia by coronary computed tomography angiography (CCTA).
Background: Discrepancies between stenosis severity assessed at coronary computed tomography angiography (CCTA) and ischemia might depend on vessel type. Coronary plaque features are associated with ischemia. Thus, we evaluated the vessel-specific correlation of CCTA-derived diameter stenosis (DS) and invasive fractional flow reserve (FFR) and explored whether integrating morphological plaque features stratified by vessel might increase the predictive yield in identifying vessel-specific ischemia.
Methods: Observational cohort study including patients undergoing CCTA for suspected coronary artery disease, with at least one vessel with DS ≥ 50 % at CCTA, undergoing invasive coronary angiography and FFR. Plaque analysis was performed using validated semi-automated software. Coronary vessels were stratified in left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA). Per vessel independent predictors of ischemia among CCTA-derived anatomical and morphologic plaque features were tested at univariable and multivariable logistic regression analysis. The best cut-off to predict ischemia was determined by Youden's index. Ischemia was defined by FFR≤0.80.
Results: The study population consisted of 192 patients, of whom 224 vessels (61 % LAD, 19 % LCX, 20 % RCA) had lesions with DS ≥ 50 % interrogated by FFR. Despite similar DS, the rate of FFR≤0.80 was higher in the LAD compared to LCX and RCA (67.2 % vs 43.2 % and 44.2 %, respectively, p = 0.018). A significant correlation between DS and FFR was observed only in LAD (p = 0.003). At multivariable analysis stratified by vessel, the vessel-specific independent predictors of positive FFR were percent atheroma volume (threshold>17 %) for LAD, non-calcified plaque volume (threshold >130 mm3) for LCX, and lumen volume (threshold <844 mm3) for RCA. Integrating DS and vessel-specific morphological plaque features significantly increased the predictive yield for ischemia compared to DS alone (AUC ranging from 0.51 to 0.63 to 0.76-0.80).
Conclusions: Integrating DS and vessel-specific morphological plaque features significantly increased the predictive yield for vessel-specific ischemia compared to DS alone, potentially improving patients' referral to the catheterization laboratory.