内皮细胞覆盖的狭缝流体通道中血液微流变的激光聚集测量评估

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Alexey N. Semenov, Andrei E. Lugovtsov, Petr B. Ermolinskiy, Alexander V. Priezzhev
{"title":"内皮细胞覆盖的狭缝流体通道中血液微流变的激光聚集测量评估","authors":"Alexey N. Semenov,&nbsp;Andrei E. Lugovtsov,&nbsp;Petr B. Ermolinskiy,&nbsp;Alexander V. Priezzhev","doi":"10.1002/jbio.202400379","DOIUrl":null,"url":null,"abstract":"<p>The blood rheology in vitro in glass or plastic microfluidic chips is different from that in vivo in blood vessels with similar geometry. Absence of vascular endothelium is suggested to cause these discrepancies. This work aims to perform in vitro measurements of blood microrheologic parameters in a slit microfluidic channel covered with endothelial cells (HUVEC). The laser aggregometry was employed to measure the intensity of laser light, backscattered from the blood flow, as a function of shear stress to evaluate the hydrodynamic strength of red blood cells (RBC) aggregates in terms of critical shear stress (CSS). The results demonstrated a decrease in CSS accompanied by an increase in the accuracy of its measurement at similar shear stresses when endothelial cells were present in the channel. The findings hold valuable implications for advanced approaches for endothelization of microfluidic devices, facilitating the study of blood flow dynamics in physiologically more relevant environment.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400379","citationCount":"0","resultStr":"{\"title\":\"Laser Aggregometry Assessment of Blood Microrheology in a Slit Fluidic Channel Covered With Endothelial Cells\",\"authors\":\"Alexey N. Semenov,&nbsp;Andrei E. Lugovtsov,&nbsp;Petr B. Ermolinskiy,&nbsp;Alexander V. Priezzhev\",\"doi\":\"10.1002/jbio.202400379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The blood rheology in vitro in glass or plastic microfluidic chips is different from that in vivo in blood vessels with similar geometry. Absence of vascular endothelium is suggested to cause these discrepancies. This work aims to perform in vitro measurements of blood microrheologic parameters in a slit microfluidic channel covered with endothelial cells (HUVEC). The laser aggregometry was employed to measure the intensity of laser light, backscattered from the blood flow, as a function of shear stress to evaluate the hydrodynamic strength of red blood cells (RBC) aggregates in terms of critical shear stress (CSS). The results demonstrated a decrease in CSS accompanied by an increase in the accuracy of its measurement at similar shear stresses when endothelial cells were present in the channel. The findings hold valuable implications for advanced approaches for endothelization of microfluidic devices, facilitating the study of blood flow dynamics in physiologically more relevant environment.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"17 12\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400379\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400379\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400379","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

玻璃或塑料微流控芯片中的体外血液流变学与具有类似几何形状的血管中的体内血液流变学不同。血管内皮的缺失被认为是造成这些差异的原因。这项工作旨在对覆盖有内皮细胞(HUVEC)的狭缝微流控通道中的血液微流变参数进行体外测量。采用激光聚集测量法测量从血流中反向散射的激光强度与剪切应力的函数关系,以临界剪切应力(CSS)评估红细胞(RBC)聚集体的流体力学强度。结果表明,当通道中存在内皮细胞时,临界剪切应力会降低,同时临界剪切应力的测量精度也会提高。这些发现对微流控设备内皮化的先进方法具有重要意义,有助于在更贴近生理的环境中研究血流动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Laser Aggregometry Assessment of Blood Microrheology in a Slit Fluidic Channel Covered With Endothelial Cells

Laser Aggregometry Assessment of Blood Microrheology in a Slit Fluidic Channel Covered With Endothelial Cells

The blood rheology in vitro in glass or plastic microfluidic chips is different from that in vivo in blood vessels with similar geometry. Absence of vascular endothelium is suggested to cause these discrepancies. This work aims to perform in vitro measurements of blood microrheologic parameters in a slit microfluidic channel covered with endothelial cells (HUVEC). The laser aggregometry was employed to measure the intensity of laser light, backscattered from the blood flow, as a function of shear stress to evaluate the hydrodynamic strength of red blood cells (RBC) aggregates in terms of critical shear stress (CSS). The results demonstrated a decrease in CSS accompanied by an increase in the accuracy of its measurement at similar shear stresses when endothelial cells were present in the channel. The findings hold valuable implications for advanced approaches for endothelization of microfluidic devices, facilitating the study of blood flow dynamics in physiologically more relevant environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信