Haoze Wang , Zixing Shu , Peng Chen , Jin Su , Hao Zhu , Jiawei Jiang , Chunze Yan , Jun Xiao , Yusheng Shi
{"title":"激光粉末床熔融打印具有双尺度孔隙的聚醚醚酮/生物活性玻璃复合材料支架,用于增强骨结合和骨生长。","authors":"Haoze Wang , Zixing Shu , Peng Chen , Jin Su , Hao Zhu , Jiawei Jiang , Chunze Yan , Jun Xiao , Yusheng Shi","doi":"10.1016/j.actbio.2024.09.055","DOIUrl":null,"url":null,"abstract":"<div><div>Although poly-ether-ether-ketone (PEEK) implants hold significant medical promise, their bioinert nature presents challenges in osseointegration and bone ingrowth within clinical contexts. To mitigate these challenges, the present study introduces Diamond PEEK/bioactive glass (BG) composite scaffolds, characterized by macro/micro dual-porous structures, precisely fabricated via laser powder bed fusion (LPBF) technology. The findings indicate that an increase in BG content within these scaffolds significantly augments their hydrophilicity and hydroxyapatite formation capacities. Stress-strain curve analysis demonstrates reliable load-bearing stability across all scaffold types. <em>In vitro</em> assessments confirmed the non-cytotoxicity of PEEK/BG samples and demonstrated improved osteogenic differentiation and mineralization with increased BG incorporation. Further, <em>in vivo</em> experiments illustrated that the Diamond porous structure of these scaffolds facilitated bone growth, an effect notably amplified with higher BG content. Particularly in groups with 15 wt.% and 25 wt.% BG scaffolds, new bone formation was observed not only within the macropores of the Diamond structure but also within the micropores inside the scaffold rod, suggesting an almost seamless fusion with the new bone. This demonstrates the scaffolds’ effective osteointegration and bone ingrowth properties. This study conclusively established the effectiveness of Diamond-structured PEEK/BG composite scaffolds, fabricated via LPBF, in bone repair. It highlights the crucial role of BG in enhancing osteogenic potential through interaction with the macro/micro pores of the scaffold.</div></div><div><h3>Statement of significance</h3><div>This study addresses the bioinert nature of PEEK implants by developing Diamond-structured PEEK/bioactive glass (BG) composite scaffolds by laser powder bed fusion. The dual-porous macro/microstructure enhances hydrophilicity and hydroxyapatite formation, vital for bone regeneration. By adjusting the BG content, we controlled the melt viscosity and sintering rate, leading to the formation of beneficial microscale pores. These pores resolve the issue of ineffective bioactive fillers in previous LPBF-fabricated scaffolds, enhancing the osteogenic potential of BG and inducing superior bone ingrowth and osseointegration. <em>In vitro</em> and <em>in vivo</em> analyses show enhanced osteogenic differentiation, mineralization, and bone growth, underscoring the clinical potential of these scaffolds for bone repair.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"189 ","pages":"Pages 605-620"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser powder bed fusion printed poly-ether-ether-ketone/bioactive glass composite scaffolds with dual-scale pores for enhanced osseointegration and bone ingrowth\",\"authors\":\"Haoze Wang , Zixing Shu , Peng Chen , Jin Su , Hao Zhu , Jiawei Jiang , Chunze Yan , Jun Xiao , Yusheng Shi\",\"doi\":\"10.1016/j.actbio.2024.09.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although poly-ether-ether-ketone (PEEK) implants hold significant medical promise, their bioinert nature presents challenges in osseointegration and bone ingrowth within clinical contexts. To mitigate these challenges, the present study introduces Diamond PEEK/bioactive glass (BG) composite scaffolds, characterized by macro/micro dual-porous structures, precisely fabricated via laser powder bed fusion (LPBF) technology. The findings indicate that an increase in BG content within these scaffolds significantly augments their hydrophilicity and hydroxyapatite formation capacities. Stress-strain curve analysis demonstrates reliable load-bearing stability across all scaffold types. <em>In vitro</em> assessments confirmed the non-cytotoxicity of PEEK/BG samples and demonstrated improved osteogenic differentiation and mineralization with increased BG incorporation. Further, <em>in vivo</em> experiments illustrated that the Diamond porous structure of these scaffolds facilitated bone growth, an effect notably amplified with higher BG content. Particularly in groups with 15 wt.% and 25 wt.% BG scaffolds, new bone formation was observed not only within the macropores of the Diamond structure but also within the micropores inside the scaffold rod, suggesting an almost seamless fusion with the new bone. This demonstrates the scaffolds’ effective osteointegration and bone ingrowth properties. This study conclusively established the effectiveness of Diamond-structured PEEK/BG composite scaffolds, fabricated via LPBF, in bone repair. It highlights the crucial role of BG in enhancing osteogenic potential through interaction with the macro/micro pores of the scaffold.</div></div><div><h3>Statement of significance</h3><div>This study addresses the bioinert nature of PEEK implants by developing Diamond-structured PEEK/bioactive glass (BG) composite scaffolds by laser powder bed fusion. The dual-porous macro/microstructure enhances hydrophilicity and hydroxyapatite formation, vital for bone regeneration. By adjusting the BG content, we controlled the melt viscosity and sintering rate, leading to the formation of beneficial microscale pores. These pores resolve the issue of ineffective bioactive fillers in previous LPBF-fabricated scaffolds, enhancing the osteogenic potential of BG and inducing superior bone ingrowth and osseointegration. <em>In vitro</em> and <em>in vivo</em> analyses show enhanced osteogenic differentiation, mineralization, and bone growth, underscoring the clinical potential of these scaffolds for bone repair.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"189 \",\"pages\":\"Pages 605-620\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706124005828\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124005828","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Laser powder bed fusion printed poly-ether-ether-ketone/bioactive glass composite scaffolds with dual-scale pores for enhanced osseointegration and bone ingrowth
Although poly-ether-ether-ketone (PEEK) implants hold significant medical promise, their bioinert nature presents challenges in osseointegration and bone ingrowth within clinical contexts. To mitigate these challenges, the present study introduces Diamond PEEK/bioactive glass (BG) composite scaffolds, characterized by macro/micro dual-porous structures, precisely fabricated via laser powder bed fusion (LPBF) technology. The findings indicate that an increase in BG content within these scaffolds significantly augments their hydrophilicity and hydroxyapatite formation capacities. Stress-strain curve analysis demonstrates reliable load-bearing stability across all scaffold types. In vitro assessments confirmed the non-cytotoxicity of PEEK/BG samples and demonstrated improved osteogenic differentiation and mineralization with increased BG incorporation. Further, in vivo experiments illustrated that the Diamond porous structure of these scaffolds facilitated bone growth, an effect notably amplified with higher BG content. Particularly in groups with 15 wt.% and 25 wt.% BG scaffolds, new bone formation was observed not only within the macropores of the Diamond structure but also within the micropores inside the scaffold rod, suggesting an almost seamless fusion with the new bone. This demonstrates the scaffolds’ effective osteointegration and bone ingrowth properties. This study conclusively established the effectiveness of Diamond-structured PEEK/BG composite scaffolds, fabricated via LPBF, in bone repair. It highlights the crucial role of BG in enhancing osteogenic potential through interaction with the macro/micro pores of the scaffold.
Statement of significance
This study addresses the bioinert nature of PEEK implants by developing Diamond-structured PEEK/bioactive glass (BG) composite scaffolds by laser powder bed fusion. The dual-porous macro/microstructure enhances hydrophilicity and hydroxyapatite formation, vital for bone regeneration. By adjusting the BG content, we controlled the melt viscosity and sintering rate, leading to the formation of beneficial microscale pores. These pores resolve the issue of ineffective bioactive fillers in previous LPBF-fabricated scaffolds, enhancing the osteogenic potential of BG and inducing superior bone ingrowth and osseointegration. In vitro and in vivo analyses show enhanced osteogenic differentiation, mineralization, and bone growth, underscoring the clinical potential of these scaffolds for bone repair.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.