Gyda Fenn-Moltu, Andrew M Liebhold, Donald C Weber, Cleo Bertelsmeier
{"title":"意外生物控制的途径:由人类促成的昆虫捕食者和寄生虫的传播。","authors":"Gyda Fenn-Moltu, Andrew M Liebhold, Donald C Weber, Cleo Bertelsmeier","doi":"10.1002/eap.3047","DOIUrl":null,"url":null,"abstract":"<p><p>Introductions of insect predators and parasitoids for biological control are a key method for pest management. Yet in recent decades, biological control has become more strictly regulated and less frequent. Conversely, the rate of unintentional insect introductions through human activities is rising. While accidental introductions of insect natural enemies can potentially have serious ecological consequences, they are challenging to quantify as their movements go largely unobserved. We used historical border interception records collected by the US Department of Agriculture from 1913 to 2018 to describe the diversity of entomophagous insects transported unintentionally, their main introduction pathways, and trends in host specificity. There were 35,312 interceptions of insect predators and parasitoids during this period, representing 93 families from 11 orders, and 196 species from these families. Commodity associations varied, but imported plants and plant products were the main introduction pathway. Most interceptions originated with commodities imported from the Neotropical, Panamaian, and Western Palearctic regions. Among the intercepted species, 27% were found in material originating from more than one country. Two thirds of species were polyphagous host generalists. Furthermore, 25% of species had already been introduced intentionally as biological control agents internationally, and 4.6% have documented negative impacts on native biodiversity or human society. Most of the intercepted species that have not established in the United States are host generalists or have at least one known host species available. The unintentional transport of diverse natural enemy insects has the potential to cause substantial ecological impacts, both in terms of controlling pests through accidental biocontrol and disrupting native communities. Characterizing the insects being transported and their introduction pathways can inform biosecurity practices and management.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":" ","pages":"e3047"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathways for accidental biocontrol: The human-mediated dispersal of insect predators and parasitoids.\",\"authors\":\"Gyda Fenn-Moltu, Andrew M Liebhold, Donald C Weber, Cleo Bertelsmeier\",\"doi\":\"10.1002/eap.3047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Introductions of insect predators and parasitoids for biological control are a key method for pest management. Yet in recent decades, biological control has become more strictly regulated and less frequent. Conversely, the rate of unintentional insect introductions through human activities is rising. While accidental introductions of insect natural enemies can potentially have serious ecological consequences, they are challenging to quantify as their movements go largely unobserved. We used historical border interception records collected by the US Department of Agriculture from 1913 to 2018 to describe the diversity of entomophagous insects transported unintentionally, their main introduction pathways, and trends in host specificity. There were 35,312 interceptions of insect predators and parasitoids during this period, representing 93 families from 11 orders, and 196 species from these families. Commodity associations varied, but imported plants and plant products were the main introduction pathway. Most interceptions originated with commodities imported from the Neotropical, Panamaian, and Western Palearctic regions. Among the intercepted species, 27% were found in material originating from more than one country. Two thirds of species were polyphagous host generalists. Furthermore, 25% of species had already been introduced intentionally as biological control agents internationally, and 4.6% have documented negative impacts on native biodiversity or human society. Most of the intercepted species that have not established in the United States are host generalists or have at least one known host species available. The unintentional transport of diverse natural enemy insects has the potential to cause substantial ecological impacts, both in terms of controlling pests through accidental biocontrol and disrupting native communities. Characterizing the insects being transported and their introduction pathways can inform biosecurity practices and management.</p>\",\"PeriodicalId\":55168,\"journal\":{\"name\":\"Ecological Applications\",\"volume\":\" \",\"pages\":\"e3047\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/eap.3047\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/eap.3047","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Pathways for accidental biocontrol: The human-mediated dispersal of insect predators and parasitoids.
Introductions of insect predators and parasitoids for biological control are a key method for pest management. Yet in recent decades, biological control has become more strictly regulated and less frequent. Conversely, the rate of unintentional insect introductions through human activities is rising. While accidental introductions of insect natural enemies can potentially have serious ecological consequences, they are challenging to quantify as their movements go largely unobserved. We used historical border interception records collected by the US Department of Agriculture from 1913 to 2018 to describe the diversity of entomophagous insects transported unintentionally, their main introduction pathways, and trends in host specificity. There were 35,312 interceptions of insect predators and parasitoids during this period, representing 93 families from 11 orders, and 196 species from these families. Commodity associations varied, but imported plants and plant products were the main introduction pathway. Most interceptions originated with commodities imported from the Neotropical, Panamaian, and Western Palearctic regions. Among the intercepted species, 27% were found in material originating from more than one country. Two thirds of species were polyphagous host generalists. Furthermore, 25% of species had already been introduced intentionally as biological control agents internationally, and 4.6% have documented negative impacts on native biodiversity or human society. Most of the intercepted species that have not established in the United States are host generalists or have at least one known host species available. The unintentional transport of diverse natural enemy insects has the potential to cause substantial ecological impacts, both in terms of controlling pests through accidental biocontrol and disrupting native communities. Characterizing the insects being transported and their introduction pathways can inform biosecurity practices and management.
期刊介绍:
The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.