由呼吸道微生物山茶气单胞菌(Aeromicrobium camelliae)介导的溶菌酶 PE 可减轻小鼠的 H9N2 病毒感染。

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Qingsong Yan, Junhong Xing, Ruonan Zou, Mingjie Sun, Boshi Zou, Yingjie Wang, Tianming Niu, Tong Yu, Haibin Huang, Wentao Yang, Chunwei Shi, Guilian Yang, Chunfeng Wang
{"title":"由呼吸道微生物山茶气单胞菌(Aeromicrobium camelliae)介导的溶菌酶 PE 可减轻小鼠的 H9N2 病毒感染。","authors":"Qingsong Yan, Junhong Xing, Ruonan Zou, Mingjie Sun, Boshi Zou, Yingjie Wang, Tianming Niu, Tong Yu, Haibin Huang, Wentao Yang, Chunwei Shi, Guilian Yang, Chunfeng Wang","doi":"10.1186/s13567-024-01391-x","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"136"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468851/pdf/","citationCount":"0","resultStr":"{\"title\":\"LysoPE mediated by respiratory microorganism Aeromicrobium camelliae alleviates H9N2 challenge in mice.\",\"authors\":\"Qingsong Yan, Junhong Xing, Ruonan Zou, Mingjie Sun, Boshi Zou, Yingjie Wang, Tianming Niu, Tong Yu, Haibin Huang, Wentao Yang, Chunwei Shi, Guilian Yang, Chunfeng Wang\",\"doi\":\"10.1186/s13567-024-01391-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.</p>\",\"PeriodicalId\":23658,\"journal\":{\"name\":\"Veterinary Research\",\"volume\":\"55 1\",\"pages\":\"136\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13567-024-01391-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01391-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

流感仍然是一种严重的呼吸道疾病,对全球健康构成重大威胁。最近的研究发现,从鼻孔到肺泡,呼吸道内的微生物群落各不相同。这项研究利用 16S rDNA 测序和非靶向代谢组学支持的小鼠模型,探索了特定的抗流感呼吸道微生物。研究发现,将从 H9N2 流感中存活下来的小鼠的呼吸道微生物转移到抗生素治疗的小鼠身上,可增强小鼠的抗感染能力。值得注意的是,存活小鼠的呼吸道微生物水平明显更高。小鼠经抗生素预处理后接种山茶担子菌,感染严重程度降低,表现为体重减轻、存活率提高和肺部病毒滴度降低。代谢组分析表明,轻度感染的小鼠体内溶菌酶(16:0)水平升高。体内和体外实验表明,LysoPE(16:0)能抑制诱导型一氧化氮合酶(INOS)和环氧化酶-2(COX2)的表达,增强抗流感防御能力。我们的研究结果表明,山茶气生菌可作为一种潜在的流感预防药物和流感预后标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LysoPE mediated by respiratory microorganism Aeromicrobium camelliae alleviates H9N2 challenge in mice.

Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信