Ingridy Izabella Vieira Cardoso, Marcela Nunes Rosa, Daniel Antunes Moreno, Letícia Maria Barbosa Tufi, Lorrayne Pereira Ramos, Larissa Alessandra Bourdeth Pereira, Lenilson Silva, Janaina Mello Soares Galvão, Isabela Cristiane Tosi, André Van Helvoort Lengert, Marcelo Cavalcanti Da Cruz, Silvia Aparecida Teixeira, Rui Manuel Reis, Luiz Fernando Lopes, Mariana Tomazini Pinto
{"title":"耐顺铂生殖细胞肿瘤模型:上皮-间充质转化调节因子 SLUG 的研究。","authors":"Ingridy Izabella Vieira Cardoso, Marcela Nunes Rosa, Daniel Antunes Moreno, Letícia Maria Barbosa Tufi, Lorrayne Pereira Ramos, Larissa Alessandra Bourdeth Pereira, Lenilson Silva, Janaina Mello Soares Galvão, Isabela Cristiane Tosi, André Van Helvoort Lengert, Marcelo Cavalcanti Da Cruz, Silvia Aparecida Teixeira, Rui Manuel Reis, Luiz Fernando Lopes, Mariana Tomazini Pinto","doi":"10.3892/mmr.2024.13352","DOIUrl":null,"url":null,"abstract":"<p><p>Germ cell tumors (GCTs) constitute diverse neoplasms arising in the gonads or extragonadal locations. Testicular GCTs (TGCTs) are the predominant solid tumors in adolescents and young men. Despite cisplatin serving as the primary therapeutic intervention for TGCTs, 10‑20% of patients with advanced disease demonstrate resistance to cisplatin‑based chemotherapy, and epithelial‑mesenchymal transition (EMT) is a potential contributor to this resistance. EMT is regulated by various factors, including the snail family transcriptional repressor 2 (<i>SLUG</i>) transcriptional factor, and, to the best of our knowledge, remains unexplored within TGCTs. Therefore, the present study investigated the EMT transcription factor <i>SLUG</i> in TGCTs. <i>In silico</i> analyses were performed to investigate the expression of EMT markers in TGCTs. In addition, a cisplatin‑resistant model for TGCTs was developed using the NTERA‑2 cell line, and a mouse model was also established. Subsequently, EMT was assessed both <i>in vitro</i> and <i>in vivo</i> within the cisplatin‑resistant models using quantitative PCR and western blot analyses. The results of the <i>in silico</i> analysis showed that the different histologies exhibited distinct expression profiles for EMT markers. Seminomas exhibited a lower expression of EMT markers, whereas embryonal carcinomas and mixed GCT demonstrated high expression. Notably, patients with lower <i>SLUG</i> expression had longer median progression‑free survival (46.4 months vs. 28.0 months, P=0.022). In the <i>in vitro</i> analysis, EMT‑associated genes [fibronectin; vimentin (<i>VIM</i>); actin, α2, smooth muscle; collagen type I α1; transforming growth factor‑β1; and <i>SLUG</i>] were upregulated in the cisplatin‑resistant NTERA‑2 (NTERA‑2R) cell line after 72 h of cisplatin treatment. Consistent with this finding, the NTERA‑2R mouse model demonstrated a significant upregulation in the expression levels of VIM and SLUG. In conclusion, the present findings suggested that <i>SLUG</i> may serve a crucial role in connecting EMT with the development of cisplatin resistance, and targeting <i>SLUG</i> may be a putative therapeutic strategy to mitigate cisplatin resistance.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cisplatin‑resistant germ cell tumor models: An exploration of the epithelial‑mesenchymal transition regulator <i>SLUG</i>.\",\"authors\":\"Ingridy Izabella Vieira Cardoso, Marcela Nunes Rosa, Daniel Antunes Moreno, Letícia Maria Barbosa Tufi, Lorrayne Pereira Ramos, Larissa Alessandra Bourdeth Pereira, Lenilson Silva, Janaina Mello Soares Galvão, Isabela Cristiane Tosi, André Van Helvoort Lengert, Marcelo Cavalcanti Da Cruz, Silvia Aparecida Teixeira, Rui Manuel Reis, Luiz Fernando Lopes, Mariana Tomazini Pinto\",\"doi\":\"10.3892/mmr.2024.13352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Germ cell tumors (GCTs) constitute diverse neoplasms arising in the gonads or extragonadal locations. Testicular GCTs (TGCTs) are the predominant solid tumors in adolescents and young men. Despite cisplatin serving as the primary therapeutic intervention for TGCTs, 10‑20% of patients with advanced disease demonstrate resistance to cisplatin‑based chemotherapy, and epithelial‑mesenchymal transition (EMT) is a potential contributor to this resistance. EMT is regulated by various factors, including the snail family transcriptional repressor 2 (<i>SLUG</i>) transcriptional factor, and, to the best of our knowledge, remains unexplored within TGCTs. Therefore, the present study investigated the EMT transcription factor <i>SLUG</i> in TGCTs. <i>In silico</i> analyses were performed to investigate the expression of EMT markers in TGCTs. In addition, a cisplatin‑resistant model for TGCTs was developed using the NTERA‑2 cell line, and a mouse model was also established. Subsequently, EMT was assessed both <i>in vitro</i> and <i>in vivo</i> within the cisplatin‑resistant models using quantitative PCR and western blot analyses. The results of the <i>in silico</i> analysis showed that the different histologies exhibited distinct expression profiles for EMT markers. Seminomas exhibited a lower expression of EMT markers, whereas embryonal carcinomas and mixed GCT demonstrated high expression. Notably, patients with lower <i>SLUG</i> expression had longer median progression‑free survival (46.4 months vs. 28.0 months, P=0.022). In the <i>in vitro</i> analysis, EMT‑associated genes [fibronectin; vimentin (<i>VIM</i>); actin, α2, smooth muscle; collagen type I α1; transforming growth factor‑β1; and <i>SLUG</i>] were upregulated in the cisplatin‑resistant NTERA‑2 (NTERA‑2R) cell line after 72 h of cisplatin treatment. Consistent with this finding, the NTERA‑2R mouse model demonstrated a significant upregulation in the expression levels of VIM and SLUG. In conclusion, the present findings suggested that <i>SLUG</i> may serve a crucial role in connecting EMT with the development of cisplatin resistance, and targeting <i>SLUG</i> may be a putative therapeutic strategy to mitigate cisplatin resistance.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"30 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2024.13352\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13352","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
生殖细胞瘤(GCTs)是发生在性腺或性腺外部位的多种肿瘤。睾丸生殖细胞瘤(TGCT)是青少年和年轻男性最主要的实体肿瘤。尽管顺铂是TGCTs的主要治疗手段,但10-20%的晚期患者对顺铂化疗产生了耐药性,而上皮-间质转化(EMT)是导致耐药性的潜在因素。EMT受多种因素调控,包括蜗牛家族转录抑制因子2(SLUG)转录因子。因此,本研究调查了TGCTs中的EMT转录因子SLUG。研究人员进行了硅学分析,以调查TGCTs中EMT标记物的表达情况。此外,还利用 NTERA-2 细胞系建立了顺铂耐药的 TGCTs 模型,并建立了小鼠模型。随后,利用定量 PCR 和 Western 印迹分析评估了顺铂耐药模型中的体外和体内 EMT。硅学分析的结果显示,不同组织学的EMT标记物表现出不同的表达谱。精原细胞瘤的EMT标记物表达量较低,而胚胎癌和混合型GCT的表达量较高。值得注意的是,SLUG表达较低的患者中位无进展生存期更长(46.4个月对28.0个月,P=0.022)。在体外分析中,顺铂耐药的NTERA-2(NTERA-2R)细胞系在顺铂处理72小时后,EMT相关基因[纤连蛋白;波形蛋白(VIM);肌动蛋白,α2,平滑肌;胶原蛋白I型α1;转化生长因子-β1;和SLUG]上调。与这一发现相一致的是,NTERA-2R 小鼠模型也显示出 VIM 和 SLUG 表达水平的显著上调。总之,本研究结果表明,SLUG可能在EMT与顺铂耐药性的发展之间起着至关重要的作用,靶向SLUG可能是缓解顺铂耐药性的一种治疗策略。
Cisplatin‑resistant germ cell tumor models: An exploration of the epithelial‑mesenchymal transition regulator SLUG.
Germ cell tumors (GCTs) constitute diverse neoplasms arising in the gonads or extragonadal locations. Testicular GCTs (TGCTs) are the predominant solid tumors in adolescents and young men. Despite cisplatin serving as the primary therapeutic intervention for TGCTs, 10‑20% of patients with advanced disease demonstrate resistance to cisplatin‑based chemotherapy, and epithelial‑mesenchymal transition (EMT) is a potential contributor to this resistance. EMT is regulated by various factors, including the snail family transcriptional repressor 2 (SLUG) transcriptional factor, and, to the best of our knowledge, remains unexplored within TGCTs. Therefore, the present study investigated the EMT transcription factor SLUG in TGCTs. In silico analyses were performed to investigate the expression of EMT markers in TGCTs. In addition, a cisplatin‑resistant model for TGCTs was developed using the NTERA‑2 cell line, and a mouse model was also established. Subsequently, EMT was assessed both in vitro and in vivo within the cisplatin‑resistant models using quantitative PCR and western blot analyses. The results of the in silico analysis showed that the different histologies exhibited distinct expression profiles for EMT markers. Seminomas exhibited a lower expression of EMT markers, whereas embryonal carcinomas and mixed GCT demonstrated high expression. Notably, patients with lower SLUG expression had longer median progression‑free survival (46.4 months vs. 28.0 months, P=0.022). In the in vitro analysis, EMT‑associated genes [fibronectin; vimentin (VIM); actin, α2, smooth muscle; collagen type I α1; transforming growth factor‑β1; and SLUG] were upregulated in the cisplatin‑resistant NTERA‑2 (NTERA‑2R) cell line after 72 h of cisplatin treatment. Consistent with this finding, the NTERA‑2R mouse model demonstrated a significant upregulation in the expression levels of VIM and SLUG. In conclusion, the present findings suggested that SLUG may serve a crucial role in connecting EMT with the development of cisplatin resistance, and targeting SLUG may be a putative therapeutic strategy to mitigate cisplatin resistance.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.