Homeobox B9通过EZH2-MIR203A-SNAI2轴促进肝癌细胞的侵袭和转移。

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dandan Zhang, Yumin Qiu, Wenming Zhang, Dongnian Du, Yang Liu, Lingpeng Liu, Jiajuan Li, Zehao Chen, Xuzhe Yu, Miao Ye, Wei Wang, Zijing Li, Jianghua Shao
{"title":"Homeobox B9通过EZH2-MIR203A-SNAI2轴促进肝癌细胞的侵袭和转移。","authors":"Dandan Zhang, Yumin Qiu, Wenming Zhang, Dongnian Du, Yang Liu, Lingpeng Liu, Jiajuan Li, Zehao Chen, Xuzhe Yu, Miao Ye, Wei Wang, Zijing Li, Jianghua Shao","doi":"10.1186/s12967-024-05690-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Research has elucidated that homeobox B9 (HOXB9), an important transcriptional activator, plays a pivotal role in promoting the invasion and metastasis of hepatocellular carcinoma (HCC) cells. However, the mechanism by which HOXB9 promotes the invasion and metastasis of HCC cells is incompletely understood and needs further exploration.</p><p><strong>Methods: </strong>HOXB9 and snail family transcriptional repressor 2 (SNAI2) expression were analyzed using qRT-PCR and western blotting. The invasion and metastasis of hepatocellular carcinoma (HCC) cells were investigated using in vitro and in vivo assays. The H3K27me3 enrichment and HOXB9 interaction with microRNA 203a (MIR203A) or SNAI2 were detected using ChIP-qPCR. Transcriptional activities of SNAI2 and MIR203A promoter were detected using dual-luciferase reporter assays. Co-IP and GST pull-down assays were performed to confirm the binding between HOXB9 and EZH2.</p><p><strong>Results: </strong>HOXB9 and SNAI2 were highly expressed in HCC tissues and their expression was positively intercorrelated and associated with poor prognosis in patients with HCC. In vitro and in vivo experiments confirmed that HOXB9 can upregulate the expression of SNAI2 to promote the invasion and metastasis of HCC cells. Furthermore, HOXB9 elevated SNAI2 expression by inhibiting MIR203A expression, a tumor suppressor gene, in HCC cells. Mechanistically, HOXB9 recruited enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) through interaction with its WD-binding domain, which increased EZH2-mediated histone H3 lysine 27 trimethylation (H3K27me3) at the MIR203A promoter region, in turn repressing the transcriptional activity and expression of MIR203A and consequently increasing the SNAI2 level in HCC cells. Finally, empirical evidence from in vitro and in vivo studies confirmed that mitigation of the HOXB9-mediated enhancement of epigenetic silencing of MIR203A inhibited SNAI2 expression, impeding the invasion and metastasis of HCC cells.</p><p><strong>Conclusions: </strong>Our study reveals a novel mechanism by which HOXB9 promotes the invasion and metastasis of HCC cells and expands the understanding of the function of HOXB9 in tumor progression and provides a novel therapeutic strategy for curtailing HCC invasion and metastasis.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Homeobox B9 promotes the invasion and metastasis of hepatocellular carcinoma cells via the EZH2-MIR203A-SNAI2 axis.\",\"authors\":\"Dandan Zhang, Yumin Qiu, Wenming Zhang, Dongnian Du, Yang Liu, Lingpeng Liu, Jiajuan Li, Zehao Chen, Xuzhe Yu, Miao Ye, Wei Wang, Zijing Li, Jianghua Shao\",\"doi\":\"10.1186/s12967-024-05690-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Research has elucidated that homeobox B9 (HOXB9), an important transcriptional activator, plays a pivotal role in promoting the invasion and metastasis of hepatocellular carcinoma (HCC) cells. However, the mechanism by which HOXB9 promotes the invasion and metastasis of HCC cells is incompletely understood and needs further exploration.</p><p><strong>Methods: </strong>HOXB9 and snail family transcriptional repressor 2 (SNAI2) expression were analyzed using qRT-PCR and western blotting. The invasion and metastasis of hepatocellular carcinoma (HCC) cells were investigated using in vitro and in vivo assays. The H3K27me3 enrichment and HOXB9 interaction with microRNA 203a (MIR203A) or SNAI2 were detected using ChIP-qPCR. Transcriptional activities of SNAI2 and MIR203A promoter were detected using dual-luciferase reporter assays. Co-IP and GST pull-down assays were performed to confirm the binding between HOXB9 and EZH2.</p><p><strong>Results: </strong>HOXB9 and SNAI2 were highly expressed in HCC tissues and their expression was positively intercorrelated and associated with poor prognosis in patients with HCC. In vitro and in vivo experiments confirmed that HOXB9 can upregulate the expression of SNAI2 to promote the invasion and metastasis of HCC cells. Furthermore, HOXB9 elevated SNAI2 expression by inhibiting MIR203A expression, a tumor suppressor gene, in HCC cells. Mechanistically, HOXB9 recruited enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) through interaction with its WD-binding domain, which increased EZH2-mediated histone H3 lysine 27 trimethylation (H3K27me3) at the MIR203A promoter region, in turn repressing the transcriptional activity and expression of MIR203A and consequently increasing the SNAI2 level in HCC cells. Finally, empirical evidence from in vitro and in vivo studies confirmed that mitigation of the HOXB9-mediated enhancement of epigenetic silencing of MIR203A inhibited SNAI2 expression, impeding the invasion and metastasis of HCC cells.</p><p><strong>Conclusions: </strong>Our study reveals a novel mechanism by which HOXB9 promotes the invasion and metastasis of HCC cells and expands the understanding of the function of HOXB9 in tumor progression and provides a novel therapeutic strategy for curtailing HCC invasion and metastasis.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12967-024-05690-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-024-05690-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:研究发现,HOXB9(Homeobox B9)是一种重要的转录激活因子,在促进肝癌(HCC)细胞的侵袭和转移中发挥着关键作用。方法:采用qRT-PCR和Western印迹法分析HOXB9和蜗牛家族转录抑制因子2(SNAI2)的表达。方法:利用 qRT-PCR 和 Western 印迹分析了 HOXB9 和蜗牛家族转录抑制因子 2 (SNAI2) 的表达,并利用体外和体内试验研究了肝细胞癌 (HCC) 细胞的侵袭和转移。利用 ChIP-qPCR 检测了 H3K27me3 富集和 HOXB9 与 microRNA 203a (MIR203A) 或 SNAI2 的相互作用。使用双荧光素酶报告实验检测了 SNAI2 和 MIR203A 启动子的转录活性。为了证实 HOXB9 和 EZH2 之间的结合,进行了 Co-IP 和 GST pull-down 试验:结果:HOXB9和SNAI2在HCC组织中高表达,它们的表达呈正相关,并与HCC患者的不良预后相关。体外和体内实验证实,HOXB9能上调SNAI2的表达,从而促进HCC细胞的侵袭和转移。此外,HOXB9通过抑制HCC细胞中抑癌基因MIR203A的表达来提高SNAI2的表达。从机理上讲,HOXB9通过与其WD结合域相互作用,招募了zeste 2增强子多聚酶抑制复合体2亚基(EZH2),从而增加了EZH2介导的组蛋白H3赖氨酸27三甲基化(H3K27me3)在MIR203A启动子区域的表达,进而抑制了MIR203A的转录活性和表达,从而提高了HCC细胞中SNAI2的水平。最后,来自体外和体内研究的经验证据证实,缓解 HOXB9 介导的 MIR203A 表观遗传沉默的增强作用可抑制 SNAI2 的表达,从而阻碍 HCC 细胞的侵袭和转移:我们的研究揭示了HOXB9促进HCC细胞侵袭和转移的新机制,拓展了对HOXB9在肿瘤进展中功能的认识,为遏制HCC侵袭和转移提供了新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homeobox B9 promotes the invasion and metastasis of hepatocellular carcinoma cells via the EZH2-MIR203A-SNAI2 axis.

Background: Research has elucidated that homeobox B9 (HOXB9), an important transcriptional activator, plays a pivotal role in promoting the invasion and metastasis of hepatocellular carcinoma (HCC) cells. However, the mechanism by which HOXB9 promotes the invasion and metastasis of HCC cells is incompletely understood and needs further exploration.

Methods: HOXB9 and snail family transcriptional repressor 2 (SNAI2) expression were analyzed using qRT-PCR and western blotting. The invasion and metastasis of hepatocellular carcinoma (HCC) cells were investigated using in vitro and in vivo assays. The H3K27me3 enrichment and HOXB9 interaction with microRNA 203a (MIR203A) or SNAI2 were detected using ChIP-qPCR. Transcriptional activities of SNAI2 and MIR203A promoter were detected using dual-luciferase reporter assays. Co-IP and GST pull-down assays were performed to confirm the binding between HOXB9 and EZH2.

Results: HOXB9 and SNAI2 were highly expressed in HCC tissues and their expression was positively intercorrelated and associated with poor prognosis in patients with HCC. In vitro and in vivo experiments confirmed that HOXB9 can upregulate the expression of SNAI2 to promote the invasion and metastasis of HCC cells. Furthermore, HOXB9 elevated SNAI2 expression by inhibiting MIR203A expression, a tumor suppressor gene, in HCC cells. Mechanistically, HOXB9 recruited enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) through interaction with its WD-binding domain, which increased EZH2-mediated histone H3 lysine 27 trimethylation (H3K27me3) at the MIR203A promoter region, in turn repressing the transcriptional activity and expression of MIR203A and consequently increasing the SNAI2 level in HCC cells. Finally, empirical evidence from in vitro and in vivo studies confirmed that mitigation of the HOXB9-mediated enhancement of epigenetic silencing of MIR203A inhibited SNAI2 expression, impeding the invasion and metastasis of HCC cells.

Conclusions: Our study reveals a novel mechanism by which HOXB9 promotes the invasion and metastasis of HCC cells and expands the understanding of the function of HOXB9 in tumor progression and provides a novel therapeutic strategy for curtailing HCC invasion and metastasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信