Miguel Sánchez-Moreno, Beatriz Bachero-Mena, Juan Sánchez-Valdepeñas, Fabio Yuzo Nakamura, Fernando Pareja-Blanco
{"title":"通用化与个性化负荷-速度方程对卧推运动速度损失幅度的影响:混合模型和等效分析。","authors":"Miguel Sánchez-Moreno, Beatriz Bachero-Mena, Juan Sánchez-Valdepeñas, Fabio Yuzo Nakamura, Fernando Pareja-Blanco","doi":"10.1123/ijspp.2024-0194","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study analyzed the influence of 2 velocity-based training-load prescription strategies (general vs individual load-velocity equations) on the relationship between the magnitude of velocity loss (VL) and the percentage of repetitions completed in the bench-press exercise.</p><p><strong>Methods: </strong>Thirty-five subjects completed 6 sessions consisting of performing the maximum number of repetitions to failure against their 40%, 60%, and 80% of 1-repetition maximum (1RM) in the Smith machine bench-press exercise using generalized and individualized equations to adjust the training load.</p><p><strong>Results: </strong>A close relationship and acceptable error were observed between percentage of repetitions completed and the percentage of VL reached for the 3 loading magnitudes and the 2 load-prescription strategies studied (R2 from .83 to .94; standard error of the estimate from 7% to 10%). A simple main effect was observed for load and VL thresholds but not for load-prescription strategies. No significant interaction effects were revealed. The 40% and 60% 1RM showed equivalence on data sets and the most regular variation, whereas the 80% 1-repetition maximum load showed no equivalence and more irregular variation.</p><p><strong>Conclusion: </strong>These results suggest that VL is a useful variable to predict percentage of repetitions completed in the bench-press exercise, regardless of the strategy selected to adjust the relative load. However, caution should be taken when using heavy loads.</p>","PeriodicalId":14295,"journal":{"name":"International journal of sports physiology and performance","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Generalized Versus Individualized Load-Velocity Equations on Velocity-Loss Magnitude in Bench-Press Exercise: Mixed-Model and Equivalence Analysis.\",\"authors\":\"Miguel Sánchez-Moreno, Beatriz Bachero-Mena, Juan Sánchez-Valdepeñas, Fabio Yuzo Nakamura, Fernando Pareja-Blanco\",\"doi\":\"10.1123/ijspp.2024-0194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study analyzed the influence of 2 velocity-based training-load prescription strategies (general vs individual load-velocity equations) on the relationship between the magnitude of velocity loss (VL) and the percentage of repetitions completed in the bench-press exercise.</p><p><strong>Methods: </strong>Thirty-five subjects completed 6 sessions consisting of performing the maximum number of repetitions to failure against their 40%, 60%, and 80% of 1-repetition maximum (1RM) in the Smith machine bench-press exercise using generalized and individualized equations to adjust the training load.</p><p><strong>Results: </strong>A close relationship and acceptable error were observed between percentage of repetitions completed and the percentage of VL reached for the 3 loading magnitudes and the 2 load-prescription strategies studied (R2 from .83 to .94; standard error of the estimate from 7% to 10%). A simple main effect was observed for load and VL thresholds but not for load-prescription strategies. No significant interaction effects were revealed. The 40% and 60% 1RM showed equivalence on data sets and the most regular variation, whereas the 80% 1-repetition maximum load showed no equivalence and more irregular variation.</p><p><strong>Conclusion: </strong>These results suggest that VL is a useful variable to predict percentage of repetitions completed in the bench-press exercise, regardless of the strategy selected to adjust the relative load. However, caution should be taken when using heavy loads.</p>\",\"PeriodicalId\":14295,\"journal\":{\"name\":\"International journal of sports physiology and performance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of sports physiology and performance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1123/ijspp.2024-0194\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports physiology and performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijspp.2024-0194","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Impact of Generalized Versus Individualized Load-Velocity Equations on Velocity-Loss Magnitude in Bench-Press Exercise: Mixed-Model and Equivalence Analysis.
Purpose: This study analyzed the influence of 2 velocity-based training-load prescription strategies (general vs individual load-velocity equations) on the relationship between the magnitude of velocity loss (VL) and the percentage of repetitions completed in the bench-press exercise.
Methods: Thirty-five subjects completed 6 sessions consisting of performing the maximum number of repetitions to failure against their 40%, 60%, and 80% of 1-repetition maximum (1RM) in the Smith machine bench-press exercise using generalized and individualized equations to adjust the training load.
Results: A close relationship and acceptable error were observed between percentage of repetitions completed and the percentage of VL reached for the 3 loading magnitudes and the 2 load-prescription strategies studied (R2 from .83 to .94; standard error of the estimate from 7% to 10%). A simple main effect was observed for load and VL thresholds but not for load-prescription strategies. No significant interaction effects were revealed. The 40% and 60% 1RM showed equivalence on data sets and the most regular variation, whereas the 80% 1-repetition maximum load showed no equivalence and more irregular variation.
Conclusion: These results suggest that VL is a useful variable to predict percentage of repetitions completed in the bench-press exercise, regardless of the strategy selected to adjust the relative load. However, caution should be taken when using heavy loads.
期刊介绍:
The International Journal of Sports Physiology and Performance (IJSPP) focuses on sport physiology and performance and is dedicated to advancing the knowledge of sport and exercise physiologists, sport-performance researchers, and other sport scientists. The journal publishes authoritative peer-reviewed research in sport physiology and related disciplines, with an emphasis on work having direct practical applications in enhancing sport performance in sport physiology and related disciplines. IJSPP publishes 10 issues per year: January, February, March, April, May, July, August, September, October, and November.