{"title":"使用碱改性氮化石墨碳异相催化剂对废食用油进行酯交换反应以生产生物柴油。","authors":"Monika, Vinayak V Pathak, Sangita Banga","doi":"10.1080/09593330.2024.2405032","DOIUrl":null,"url":null,"abstract":"<p><p>Developing efficient, stable, cost-effective, and environmentally benign heterogeneous catalysts for transesterification is highly required for sustainable biodiesel production. The present study explores the biodiesel production from waste cooking oil (WCO) using graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) and its alkaline-modified nanocatalyst. The catalysts were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). From the XRD analysis, crystalline sizes of g-C<sub>3</sub>N<sub>4</sub> and alkaline g-C<sub>3</sub>N<sub>4</sub> were found to be 26 and 29 nm, respectively. Transesterification of WCO was carried out at 60 °C for a reaction time of 2 h using 2 wt.% of g-C<sub>3</sub>N<sub>4</sub> and alkaline g-C<sub>3</sub>N<sub>4</sub>. Transesterification reaction catalysed by alkaline-modified g-C<sub>3</sub>N<sub>4</sub> was found with a higher yield of biodiesel (89%) than the biodiesel yield (78%) with transesterification reaction catalysed by g-C<sub>3</sub>N<sub>4</sub>. The recyclability of both catalysts was also evaluated by reusing them for up to the 5th cycle. The obtained biodiesel was analyzed by using FTIR and GC-MS. The synthesised biodiesel was found to have significant level of monounsaturated fatty acids and saturated fatty acids, which make it usefuel for use as fuel. Some physicochemical properties of the obtained biodiesel were also calculated and found appropriate as per the American Society for Testing and Materials (ASTM) standards. With high reusability and good catalytic activity, the synthesised alkaline-modified g-C<sub>3</sub>N<sub>4</sub> can be employed as a viable option for biodiesel production from WCO.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1755-1765"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transesterification of waste cooking oil for biodiesel production using alkaline-modified graphitic carbon nitride heterogeneous catalyst.\",\"authors\":\"Monika, Vinayak V Pathak, Sangita Banga\",\"doi\":\"10.1080/09593330.2024.2405032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing efficient, stable, cost-effective, and environmentally benign heterogeneous catalysts for transesterification is highly required for sustainable biodiesel production. The present study explores the biodiesel production from waste cooking oil (WCO) using graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) and its alkaline-modified nanocatalyst. The catalysts were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). From the XRD analysis, crystalline sizes of g-C<sub>3</sub>N<sub>4</sub> and alkaline g-C<sub>3</sub>N<sub>4</sub> were found to be 26 and 29 nm, respectively. Transesterification of WCO was carried out at 60 °C for a reaction time of 2 h using 2 wt.% of g-C<sub>3</sub>N<sub>4</sub> and alkaline g-C<sub>3</sub>N<sub>4</sub>. Transesterification reaction catalysed by alkaline-modified g-C<sub>3</sub>N<sub>4</sub> was found with a higher yield of biodiesel (89%) than the biodiesel yield (78%) with transesterification reaction catalysed by g-C<sub>3</sub>N<sub>4</sub>. The recyclability of both catalysts was also evaluated by reusing them for up to the 5th cycle. The obtained biodiesel was analyzed by using FTIR and GC-MS. The synthesised biodiesel was found to have significant level of monounsaturated fatty acids and saturated fatty acids, which make it usefuel for use as fuel. Some physicochemical properties of the obtained biodiesel were also calculated and found appropriate as per the American Society for Testing and Materials (ASTM) standards. With high reusability and good catalytic activity, the synthesised alkaline-modified g-C<sub>3</sub>N<sub>4</sub> can be employed as a viable option for biodiesel production from WCO.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1755-1765\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2405032\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2405032","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Transesterification of waste cooking oil for biodiesel production using alkaline-modified graphitic carbon nitride heterogeneous catalyst.
Developing efficient, stable, cost-effective, and environmentally benign heterogeneous catalysts for transesterification is highly required for sustainable biodiesel production. The present study explores the biodiesel production from waste cooking oil (WCO) using graphitic carbon nitride (g-C3N4) and its alkaline-modified nanocatalyst. The catalysts were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). From the XRD analysis, crystalline sizes of g-C3N4 and alkaline g-C3N4 were found to be 26 and 29 nm, respectively. Transesterification of WCO was carried out at 60 °C for a reaction time of 2 h using 2 wt.% of g-C3N4 and alkaline g-C3N4. Transesterification reaction catalysed by alkaline-modified g-C3N4 was found with a higher yield of biodiesel (89%) than the biodiesel yield (78%) with transesterification reaction catalysed by g-C3N4. The recyclability of both catalysts was also evaluated by reusing them for up to the 5th cycle. The obtained biodiesel was analyzed by using FTIR and GC-MS. The synthesised biodiesel was found to have significant level of monounsaturated fatty acids and saturated fatty acids, which make it usefuel for use as fuel. Some physicochemical properties of the obtained biodiesel were also calculated and found appropriate as per the American Society for Testing and Materials (ASTM) standards. With high reusability and good catalytic activity, the synthesised alkaline-modified g-C3N4 can be employed as a viable option for biodiesel production from WCO.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current