Ayberk Turkyilmaz, Kubra Adanur Saglam, Mustafa Yilmaz, Alper Han Cebi
{"title":"非综合症智障表型的强候选基因:SGSM3。","authors":"Ayberk Turkyilmaz, Kubra Adanur Saglam, Mustafa Yilmaz, Alper Han Cebi","doi":"10.1111/cge.14631","DOIUrl":null,"url":null,"abstract":"<p><p>SGSM proteins are small modulator proteins interacting with proteins in the RAS signaling pathway. Studies with mouse and human tissues indicated that SGSM genes were highly expressed in the brain and could be expressed at different levels at different stages of development in fetal and adult brain tissue. It was first reported by Birnbaum et al. that the SGSM3 gene might be associated with a Mendelian inherited disease in families of Ashkenazi Jews with clinical manifestations of intellectual disability (ID). In this study, a novel homozygous stop-gain (NM_015705.6: c.1576C>T: p.(Arg526Ter)) variation was detected in the SGSM3 gene in two siblings with short stature and ID findings. The report of two cases with bi-allelic LOF variants in the SGSM3 gene from different populations with similar clinical manifestations strengthens the potential of this gene as a candidate gene for the nonsyndromic ID phenotype. Functional studies are required to investigate the signaling pathways affected by SGSM3 gene variations to produce the ID phenotype and their effect on the functioning of neurons.</p>","PeriodicalId":10354,"journal":{"name":"Clinical Genetics","volume":" ","pages":"196-200"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725557/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Strong Candidate Gene for Nonsyndromic Intellectual Disability Phenotype: SGSM3.\",\"authors\":\"Ayberk Turkyilmaz, Kubra Adanur Saglam, Mustafa Yilmaz, Alper Han Cebi\",\"doi\":\"10.1111/cge.14631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SGSM proteins are small modulator proteins interacting with proteins in the RAS signaling pathway. Studies with mouse and human tissues indicated that SGSM genes were highly expressed in the brain and could be expressed at different levels at different stages of development in fetal and adult brain tissue. It was first reported by Birnbaum et al. that the SGSM3 gene might be associated with a Mendelian inherited disease in families of Ashkenazi Jews with clinical manifestations of intellectual disability (ID). In this study, a novel homozygous stop-gain (NM_015705.6: c.1576C>T: p.(Arg526Ter)) variation was detected in the SGSM3 gene in two siblings with short stature and ID findings. The report of two cases with bi-allelic LOF variants in the SGSM3 gene from different populations with similar clinical manifestations strengthens the potential of this gene as a candidate gene for the nonsyndromic ID phenotype. Functional studies are required to investigate the signaling pathways affected by SGSM3 gene variations to produce the ID phenotype and their effect on the functioning of neurons.</p>\",\"PeriodicalId\":10354,\"journal\":{\"name\":\"Clinical Genetics\",\"volume\":\" \",\"pages\":\"196-200\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725557/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cge.14631\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cge.14631","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
SGSM 蛋白是与 RAS 信号通路中的蛋白相互作用的小型调节蛋白。对小鼠和人类组织的研究表明,SGSM 基因在大脑中高度表达,而且在胎儿和成人脑组织的不同发育阶段会有不同水平的表达。Birnbaum 等人首次报道了 SGSM3 基因可能与临床表现为智力障碍(ID)的 Ashkenazi 犹太人家族中的孟德尔遗传病有关。在这项研究中,在两个身材矮小并伴有 ID 的兄弟姐妹中,发现了 SGSM3 基因中的一个新的同基因停止增益(NM_015705.6:c.1576C>T:p. (Arg526Ter))变异。两例来自不同人群、临床表现相似的 SGSM3 基因双等位基因 LOF 变异病例的报告,增强了该基因作为非综合征 ID 表型候选基因的潜力。要研究 SGSM3 基因变异影响 ID 表型的信号通路及其对神经元功能的影响,还需要进行功能研究。
A Strong Candidate Gene for Nonsyndromic Intellectual Disability Phenotype: SGSM3.
SGSM proteins are small modulator proteins interacting with proteins in the RAS signaling pathway. Studies with mouse and human tissues indicated that SGSM genes were highly expressed in the brain and could be expressed at different levels at different stages of development in fetal and adult brain tissue. It was first reported by Birnbaum et al. that the SGSM3 gene might be associated with a Mendelian inherited disease in families of Ashkenazi Jews with clinical manifestations of intellectual disability (ID). In this study, a novel homozygous stop-gain (NM_015705.6: c.1576C>T: p.(Arg526Ter)) variation was detected in the SGSM3 gene in two siblings with short stature and ID findings. The report of two cases with bi-allelic LOF variants in the SGSM3 gene from different populations with similar clinical manifestations strengthens the potential of this gene as a candidate gene for the nonsyndromic ID phenotype. Functional studies are required to investigate the signaling pathways affected by SGSM3 gene variations to produce the ID phenotype and their effect on the functioning of neurons.
期刊介绍:
Clinical Genetics links research to the clinic, translating advances in our understanding of the molecular basis of genetic disease for the practising clinical geneticist. The journal publishes high quality research papers, short reports, reviews and mini-reviews that connect medical genetics research with clinical practice.
Topics of particular interest are:
• Linking genetic variations to disease
• Genome rearrangements and disease
• Epigenetics and disease
• The translation of genotype to phenotype
• Genetics of complex disease
• Management/intervention of genetic diseases
• Novel therapies for genetic diseases
• Developmental biology, as it relates to clinical genetics
• Social science research on the psychological and behavioural aspects of living with or being at risk of genetic disease