将辛伐他汀重新用于治疗肺炎克雷伯氏菌感染:体外和体内研究。

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Biofouling Pub Date : 2024-11-01 Epub Date: 2024-10-10 DOI:10.1080/08927014.2024.2413652
Ehssan Moglad, Engy Elekhnawy, Nuor Alanazi, Omnia Momtaz Al-Fakhrany
{"title":"将辛伐他汀重新用于治疗肺炎克雷伯氏菌感染:体外和体内研究。","authors":"Ehssan Moglad, Engy Elekhnawy, Nuor Alanazi, Omnia Momtaz Al-Fakhrany","doi":"10.1080/08927014.2024.2413652","DOIUrl":null,"url":null,"abstract":"<p><p>Simvastatin had minimum inhibitory concentrations of 32 to 128 µg/mL against Klebsiella pneumoniae isolates and hindered the biofilm-formation ability of 58.54% of the isolates. It considerably diminished the bacterial cell counts in the biofilms as revealed by scanning electron microscope. Also, qRT-PCR revealed a downregulation of the biofilm genes (bcsA, wza, and luxS) by simvastatin in 48.78% of the isolates. Moreover, simvastatin has significantly improved the survival of mice and decreased the burden of bacteria in the infected lungs. Also, the histological architecture was substantially improved in the simvastatin-treated group, as the alveolar sacs and bronchioles appeared normal with minimal collagen fiber deposition. The immunohistochemical studies exposed that the TNF-α, NF-kβ, and COX-2 immunostaining considerably declined in the simvastatin-treated group. Furthermore, ELISA exposed that both IL-1β and IL-6 were considerably diminished in the lungs of the simvastatin-treated group.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"801-815"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repurposing simvastatin for treatment of <i>Klebsiella pneumoniae</i> infections: <i>in vitro</i> and <i>in vivo</i> study.\",\"authors\":\"Ehssan Moglad, Engy Elekhnawy, Nuor Alanazi, Omnia Momtaz Al-Fakhrany\",\"doi\":\"10.1080/08927014.2024.2413652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simvastatin had minimum inhibitory concentrations of 32 to 128 µg/mL against Klebsiella pneumoniae isolates and hindered the biofilm-formation ability of 58.54% of the isolates. It considerably diminished the bacterial cell counts in the biofilms as revealed by scanning electron microscope. Also, qRT-PCR revealed a downregulation of the biofilm genes (bcsA, wza, and luxS) by simvastatin in 48.78% of the isolates. Moreover, simvastatin has significantly improved the survival of mice and decreased the burden of bacteria in the infected lungs. Also, the histological architecture was substantially improved in the simvastatin-treated group, as the alveolar sacs and bronchioles appeared normal with minimal collagen fiber deposition. The immunohistochemical studies exposed that the TNF-α, NF-kβ, and COX-2 immunostaining considerably declined in the simvastatin-treated group. Furthermore, ELISA exposed that both IL-1β and IL-6 were considerably diminished in the lungs of the simvastatin-treated group.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":\" \",\"pages\":\"801-815\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2024.2413652\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2413652","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

辛伐他汀对肺炎克雷伯氏菌分离物的最小抑制浓度为 32 至 128 µg/mL,能抑制 58.54% 分离物的生物膜形成能力。扫描电子显微镜显示,它大大减少了生物膜中的细菌细胞数量。此外,qRT-PCR 显示,48.78% 的分离菌株的生物膜基因(bcsA、wza 和 luxS)受到辛伐他汀的下调。此外,辛伐他汀还能显著提高小鼠的存活率,并减少受感染肺部的细菌负荷。此外,辛伐他汀治疗组的组织学结构也有很大改善,肺泡囊和支气管看起来正常,胶原纤维沉积极少。免疫组化研究显示,辛伐他汀治疗组的 TNF-α、NF-kβ 和 COX-2 免疫染色显著下降。此外,酶联免疫吸附试验显示,辛伐他汀治疗组肺部的IL-1β和IL-6均显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repurposing simvastatin for treatment of Klebsiella pneumoniae infections: in vitro and in vivo study.

Simvastatin had minimum inhibitory concentrations of 32 to 128 µg/mL against Klebsiella pneumoniae isolates and hindered the biofilm-formation ability of 58.54% of the isolates. It considerably diminished the bacterial cell counts in the biofilms as revealed by scanning electron microscope. Also, qRT-PCR revealed a downregulation of the biofilm genes (bcsA, wza, and luxS) by simvastatin in 48.78% of the isolates. Moreover, simvastatin has significantly improved the survival of mice and decreased the burden of bacteria in the infected lungs. Also, the histological architecture was substantially improved in the simvastatin-treated group, as the alveolar sacs and bronchioles appeared normal with minimal collagen fiber deposition. The immunohistochemical studies exposed that the TNF-α, NF-kβ, and COX-2 immunostaining considerably declined in the simvastatin-treated group. Furthermore, ELISA exposed that both IL-1β and IL-6 were considerably diminished in the lungs of the simvastatin-treated group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信