{"title":"LncRNA6524/miR-92a-2-5p/Dvl1/Wnt/β-catenin轴促进了UUO小鼠模型的肾脏纤维化。","authors":"","doi":"10.1016/j.abb.2024.110175","DOIUrl":null,"url":null,"abstract":"<div><div>LncRNAs are reported to participate in multiple biological and pathological processes, including renal fibrosis due to obstructive nephropathy. However, the function and mechanisms of each lncRNA in this context differ. In this study, we created a fibrosis model in vitro using TGF-β1 treatment and in vivo through unilateral ureteral obstruction. We demonstrated that lncRNA6524 expression increased in both models, as confirmed by qPCR. Additionally, we discovered that lncRNA6524 mediates the TGF-β1-induced accumulation of extracellular matrix (ECM) proteins in BUMPT cells. We investigated the mechanism using dual luciferase reporter assays, immunofluorescence, and qPCR. Our results indicate that lncRNA6524 acts as a sponge for miR-92a-2-5p, promoting renal fibrosis by upregulating the Dvl1/Wnt/β-catenin signaling pathway. In summary, our findings demonstrate a linear regulatory relationship among lncRNA6524, miR-92a-2-5p, and the Dvl1/Wnt/β-catenin axis in renal epithelial cells during kidney obstruction. This highlights a new potential target for treating obstruction-related renal fibrosis.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The LncRNA6524/miR-92a-2-5p/Dvl1/Wnt/β-catenin axis promotes renal fibrosis in the UUO mouse model\",\"authors\":\"\",\"doi\":\"10.1016/j.abb.2024.110175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LncRNAs are reported to participate in multiple biological and pathological processes, including renal fibrosis due to obstructive nephropathy. However, the function and mechanisms of each lncRNA in this context differ. In this study, we created a fibrosis model in vitro using TGF-β1 treatment and in vivo through unilateral ureteral obstruction. We demonstrated that lncRNA6524 expression increased in both models, as confirmed by qPCR. Additionally, we discovered that lncRNA6524 mediates the TGF-β1-induced accumulation of extracellular matrix (ECM) proteins in BUMPT cells. We investigated the mechanism using dual luciferase reporter assays, immunofluorescence, and qPCR. Our results indicate that lncRNA6524 acts as a sponge for miR-92a-2-5p, promoting renal fibrosis by upregulating the Dvl1/Wnt/β-catenin signaling pathway. In summary, our findings demonstrate a linear regulatory relationship among lncRNA6524, miR-92a-2-5p, and the Dvl1/Wnt/β-catenin axis in renal epithelial cells during kidney obstruction. This highlights a new potential target for treating obstruction-related renal fibrosis.</div></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986124002972\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124002972","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The LncRNA6524/miR-92a-2-5p/Dvl1/Wnt/β-catenin axis promotes renal fibrosis in the UUO mouse model
LncRNAs are reported to participate in multiple biological and pathological processes, including renal fibrosis due to obstructive nephropathy. However, the function and mechanisms of each lncRNA in this context differ. In this study, we created a fibrosis model in vitro using TGF-β1 treatment and in vivo through unilateral ureteral obstruction. We demonstrated that lncRNA6524 expression increased in both models, as confirmed by qPCR. Additionally, we discovered that lncRNA6524 mediates the TGF-β1-induced accumulation of extracellular matrix (ECM) proteins in BUMPT cells. We investigated the mechanism using dual luciferase reporter assays, immunofluorescence, and qPCR. Our results indicate that lncRNA6524 acts as a sponge for miR-92a-2-5p, promoting renal fibrosis by upregulating the Dvl1/Wnt/β-catenin signaling pathway. In summary, our findings demonstrate a linear regulatory relationship among lncRNA6524, miR-92a-2-5p, and the Dvl1/Wnt/β-catenin axis in renal epithelial cells during kidney obstruction. This highlights a new potential target for treating obstruction-related renal fibrosis.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.