Steven B Heymsfield, John D Sorkin, Diana M Thomas, Shengping Yang, Moonseong Heo, Cassidy McCarthy, Jasmine Brown, Angelo Pietrobelli
{"title":"体重/身高2:世界上最广泛使用的脂肪指数的数学概述。","authors":"Steven B Heymsfield, John D Sorkin, Diana M Thomas, Shengping Yang, Moonseong Heo, Cassidy McCarthy, Jasmine Brown, Angelo Pietrobelli","doi":"10.1111/obr.13842","DOIUrl":null,"url":null,"abstract":"<p><p>A footnote in Adolphe Quetelet's classic 1835 Treatise on Man described his algebraic analysis of how body weight ( <math> <semantics><mrow><mi>W</mi></mrow> <annotation>$$ W $$</annotation></semantics> </math> ) varies with height ( <math> <semantics><mrow><mi>H</mi></mrow> <annotation>$$ H $$</annotation></semantics> </math> ) in adult males and females. Using data on 12 short and 12 tall subjects of each sex, Quetelet established the rule that <math> <semantics><mrow><mi>W</mi></mrow> <annotation>$$ W $$</annotation></semantics> </math> is approximately proportional ( <math> <semantics><mrow><mo>∝</mo></mrow> <annotation>$$ \\propto $$</annotation></semantics> </math> ) to H<sup>2</sup> in adults; that is, <math> <semantics><mrow><mi>W</mi> <mo>∝</mo> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ W\\propto {H}^2 $$</annotation></semantics> </math> when <math> <semantics><mrow><mi>W</mi> <mo>≈</mo> <mi>α</mi> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ W\\approx \\alpha {H}^2 $$</annotation></semantics> </math> for some constant <math> <semantics><mrow><mi>α</mi></mrow> <annotation>$$ \\alpha $$</annotation></semantics> </math> . Quetelet's Rule ( <math> <semantics><mrow><mi>W</mi> <mo>∝</mo> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ W\\propto {H}^2 $$</annotation></semantics> </math> ), transformed and renamed in the twentieth century to body mass index ( <math> <semantics><mrow><mi>BMI</mi> <mo>=</mo> <mi>W</mi> <mo>/</mo> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ \\mathrm{BMI}=W/{H}^2 $$</annotation></semantics> </math> ), is now a globally applied phenotypic descriptor of adiposity at the individual and population level. The journey from footnote to ubiquitous adiposity measure traveled through hundreds of scientific reports and many more lay publications. The recent introduction of highly effective pharmacologic weight loss treatments has heightened scrutiny of BMI's origins and appropriateness as a gateway marker for diagnosing and monitoring people with obesity. This contemporary context prompted the current report that delves into the biological and mathematical paradigms that underlie the simple index <math> <semantics><mrow><mi>BMI</mi> <mo>=</mo> <mi>W</mi> <mo>/</mo> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ \\mathrm{BMI}=W/{H}^2 $$</annotation></semantics> </math> . Students and practitioners can improve or gain new insights into their understanding of BMI's historical origins and quantitative underpinning from the provided overview, facilitating informed use of BMI and related indices in research and clinical settings.</p>","PeriodicalId":216,"journal":{"name":"Obesity Reviews","volume":" ","pages":"e13842"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight/height<sup>2</sup>: Mathematical overview of the world's most widely used adiposity index.\",\"authors\":\"Steven B Heymsfield, John D Sorkin, Diana M Thomas, Shengping Yang, Moonseong Heo, Cassidy McCarthy, Jasmine Brown, Angelo Pietrobelli\",\"doi\":\"10.1111/obr.13842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A footnote in Adolphe Quetelet's classic 1835 Treatise on Man described his algebraic analysis of how body weight ( <math> <semantics><mrow><mi>W</mi></mrow> <annotation>$$ W $$</annotation></semantics> </math> ) varies with height ( <math> <semantics><mrow><mi>H</mi></mrow> <annotation>$$ H $$</annotation></semantics> </math> ) in adult males and females. Using data on 12 short and 12 tall subjects of each sex, Quetelet established the rule that <math> <semantics><mrow><mi>W</mi></mrow> <annotation>$$ W $$</annotation></semantics> </math> is approximately proportional ( <math> <semantics><mrow><mo>∝</mo></mrow> <annotation>$$ \\\\propto $$</annotation></semantics> </math> ) to H<sup>2</sup> in adults; that is, <math> <semantics><mrow><mi>W</mi> <mo>∝</mo> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ W\\\\propto {H}^2 $$</annotation></semantics> </math> when <math> <semantics><mrow><mi>W</mi> <mo>≈</mo> <mi>α</mi> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ W\\\\approx \\\\alpha {H}^2 $$</annotation></semantics> </math> for some constant <math> <semantics><mrow><mi>α</mi></mrow> <annotation>$$ \\\\alpha $$</annotation></semantics> </math> . Quetelet's Rule ( <math> <semantics><mrow><mi>W</mi> <mo>∝</mo> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ W\\\\propto {H}^2 $$</annotation></semantics> </math> ), transformed and renamed in the twentieth century to body mass index ( <math> <semantics><mrow><mi>BMI</mi> <mo>=</mo> <mi>W</mi> <mo>/</mo> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ \\\\mathrm{BMI}=W/{H}^2 $$</annotation></semantics> </math> ), is now a globally applied phenotypic descriptor of adiposity at the individual and population level. The journey from footnote to ubiquitous adiposity measure traveled through hundreds of scientific reports and many more lay publications. The recent introduction of highly effective pharmacologic weight loss treatments has heightened scrutiny of BMI's origins and appropriateness as a gateway marker for diagnosing and monitoring people with obesity. This contemporary context prompted the current report that delves into the biological and mathematical paradigms that underlie the simple index <math> <semantics><mrow><mi>BMI</mi> <mo>=</mo> <mi>W</mi> <mo>/</mo> <msup><mi>H</mi> <mn>2</mn></msup> </mrow> <annotation>$$ \\\\mathrm{BMI}=W/{H}^2 $$</annotation></semantics> </math> . Students and practitioners can improve or gain new insights into their understanding of BMI's historical origins and quantitative underpinning from the provided overview, facilitating informed use of BMI and related indices in research and clinical settings.</p>\",\"PeriodicalId\":216,\"journal\":{\"name\":\"Obesity Reviews\",\"volume\":\" \",\"pages\":\"e13842\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Obesity Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/obr.13842\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obesity Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/obr.13842","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
摘要
阿道夫-奎特莱(Adolphe Quetelet)在 1835 年的经典著作《人论》中的一个脚注描述了他对成年男性和女性体重(W $$ W $$)随身高(H $$ H $$)变化的代数分析。奎特莱利用男女各12名矮个子和12名高个子受试者的数据,建立了成人W $$ W $$与H2近似成正比(∝ $$ \propto $$)的规则;也就是说,当W ≈ α H 2 $$ W\approx \alpha {H}^2$为某个常数α $$ \alpha $$时,W ∝ H 2 $$ W\propto {H}^2$。Quetelet's Rule ( W ∝ H 2 $$ W\propto {H}^2 $$),在二十世纪被转换并更名为身体质量指数(BMI = W / H 2 $$ \mathrm{BMI}=W/{H}^2$$),现在已成为全球应用的个体和人群脂肪含量的表型描述符。从脚注到无处不在的脂肪测量方法,其间经历了数百份科学报告和更多的非专业出版物。最近推出的高效药物减肥疗法,使人们更加关注 BMI 作为诊断和监测肥胖症患者的入口标志的起源和适宜性。在这一时代背景下,本报告深入探讨了简单指数 BMI = W / H 2 $$ \mathrm{BMI}=W/{H}^2 $$ 的生物学和数学范式。学生和从业人员可以从所提供的概述中提高对 BMI 的历史渊源和定量基础的理解或获得新的见解,从而有助于在研究和临床环境中明智地使用 BMI 和相关指数。
Weight/height2: Mathematical overview of the world's most widely used adiposity index.
A footnote in Adolphe Quetelet's classic 1835 Treatise on Man described his algebraic analysis of how body weight ( ) varies with height ( ) in adult males and females. Using data on 12 short and 12 tall subjects of each sex, Quetelet established the rule that is approximately proportional ( ) to H2 in adults; that is, when for some constant . Quetelet's Rule ( ), transformed and renamed in the twentieth century to body mass index ( ), is now a globally applied phenotypic descriptor of adiposity at the individual and population level. The journey from footnote to ubiquitous adiposity measure traveled through hundreds of scientific reports and many more lay publications. The recent introduction of highly effective pharmacologic weight loss treatments has heightened scrutiny of BMI's origins and appropriateness as a gateway marker for diagnosing and monitoring people with obesity. This contemporary context prompted the current report that delves into the biological and mathematical paradigms that underlie the simple index . Students and practitioners can improve or gain new insights into their understanding of BMI's historical origins and quantitative underpinning from the provided overview, facilitating informed use of BMI and related indices in research and clinical settings.
期刊介绍:
Obesity Reviews is a monthly journal publishing reviews on all disciplines related to obesity and its comorbidities. This includes basic and behavioral sciences, clinical treatment and outcomes, epidemiology, prevention and public health. The journal should, therefore, appeal to all professionals with an interest in obesity and its comorbidities.
Review types may include systematic narrative reviews, quantitative meta-analyses and narrative reviews but all must offer new insights, critical or novel perspectives that will enhance the state of knowledge in the field.
The editorial policy is to publish high quality peer-reviewed manuscripts that provide needed new insight into all aspects of obesity and its related comorbidities while minimizing the period between submission and publication.