Song Jiang , Junzhe Peng , Syeda Saneela , Ruoyun Shi , Daoming Wang , Qingheng Tang , Xiaming Shi , Yan Meng
{"title":"双核定位序列是 ADARa 在沙蚕体内进行核导入和稳定自我嵌合所不可或缺的。","authors":"Song Jiang , Junzhe Peng , Syeda Saneela , Ruoyun Shi , Daoming Wang , Qingheng Tang , Xiaming Shi , Yan Meng","doi":"10.1016/j.ibmb.2024.104190","DOIUrl":null,"url":null,"abstract":"<div><div>The conservative post-transcriptional modification in mammals and <em>Drosophila</em> is adenosine-to-inosine (A-to-I) deamination in double-stranded RNA, catalyzed by RNA-editing enzymes known as adenosine deaminases acting on RNA (ADARs). The traditional nuclear import pathway for ADARs involves the recognition of a putative classical nuclear localization sequence (NLS) by importin α4 and α5. In our previous research, ADAR in silkworm, <em>Bombyx mori</em> (BmADARa) was confirmed predominantly located in the nucleus. However, the location of the NLS in BmADARa and its impact on nuclear import and self-dimerization remained unclear. Utilizing NLS prediction software, we predicted the presence of a bipartite NLS within the amino-terminal, 85 amino acids of BmADARa (N85). This prediction was validated through point mutation, which demonstrated that the bipartite NLS could directly mediate nuclear import of BmADARa. Co-immunoprecipitation analysis revealed that BmADARa is mainly dependent on BmKaryopherin α3 (homologous to mammalian importin α4) for nuclear import, although both BmKaryopherin α3 and BmImportin α5 could recognize bipartite NLS. The N-terminal truncated mutants and the bipartite NLS mutants of BmADARa suggest that the bipartite NLS is the major nuclear import site and a crucial structure for self-dimerization of BmADARa. In conclusion, the N-terminal bipartite NLS of BmADARa is recognized by BmKaryopherin α3 and BmImportin α5, facilitating its nuclear import. This promotes BmADARa self-dimerization and maintains the stability of dimerization, thereby enhancing its editing efficiency on target substrates. The results of this research demonstrate the role of bipartite NLS in BmADARa editing and laying a foundation for further research on the regulation of BmADARa in the growth and development in <em>B. mori</em>.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"174 ","pages":"Article 104190"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bipartite nuclear localization sequence is indispensable for nuclear import and stability of self-dimerization of ADARa in Bombyx mori\",\"authors\":\"Song Jiang , Junzhe Peng , Syeda Saneela , Ruoyun Shi , Daoming Wang , Qingheng Tang , Xiaming Shi , Yan Meng\",\"doi\":\"10.1016/j.ibmb.2024.104190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The conservative post-transcriptional modification in mammals and <em>Drosophila</em> is adenosine-to-inosine (A-to-I) deamination in double-stranded RNA, catalyzed by RNA-editing enzymes known as adenosine deaminases acting on RNA (ADARs). The traditional nuclear import pathway for ADARs involves the recognition of a putative classical nuclear localization sequence (NLS) by importin α4 and α5. In our previous research, ADAR in silkworm, <em>Bombyx mori</em> (BmADARa) was confirmed predominantly located in the nucleus. However, the location of the NLS in BmADARa and its impact on nuclear import and self-dimerization remained unclear. Utilizing NLS prediction software, we predicted the presence of a bipartite NLS within the amino-terminal, 85 amino acids of BmADARa (N85). This prediction was validated through point mutation, which demonstrated that the bipartite NLS could directly mediate nuclear import of BmADARa. Co-immunoprecipitation analysis revealed that BmADARa is mainly dependent on BmKaryopherin α3 (homologous to mammalian importin α4) for nuclear import, although both BmKaryopherin α3 and BmImportin α5 could recognize bipartite NLS. The N-terminal truncated mutants and the bipartite NLS mutants of BmADARa suggest that the bipartite NLS is the major nuclear import site and a crucial structure for self-dimerization of BmADARa. In conclusion, the N-terminal bipartite NLS of BmADARa is recognized by BmKaryopherin α3 and BmImportin α5, facilitating its nuclear import. This promotes BmADARa self-dimerization and maintains the stability of dimerization, thereby enhancing its editing efficiency on target substrates. The results of this research demonstrate the role of bipartite NLS in BmADARa editing and laying a foundation for further research on the regulation of BmADARa in the growth and development in <em>B. mori</em>.</div></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"174 \",\"pages\":\"Article 104190\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965174824001218\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824001218","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bipartite nuclear localization sequence is indispensable for nuclear import and stability of self-dimerization of ADARa in Bombyx mori
The conservative post-transcriptional modification in mammals and Drosophila is adenosine-to-inosine (A-to-I) deamination in double-stranded RNA, catalyzed by RNA-editing enzymes known as adenosine deaminases acting on RNA (ADARs). The traditional nuclear import pathway for ADARs involves the recognition of a putative classical nuclear localization sequence (NLS) by importin α4 and α5. In our previous research, ADAR in silkworm, Bombyx mori (BmADARa) was confirmed predominantly located in the nucleus. However, the location of the NLS in BmADARa and its impact on nuclear import and self-dimerization remained unclear. Utilizing NLS prediction software, we predicted the presence of a bipartite NLS within the amino-terminal, 85 amino acids of BmADARa (N85). This prediction was validated through point mutation, which demonstrated that the bipartite NLS could directly mediate nuclear import of BmADARa. Co-immunoprecipitation analysis revealed that BmADARa is mainly dependent on BmKaryopherin α3 (homologous to mammalian importin α4) for nuclear import, although both BmKaryopherin α3 and BmImportin α5 could recognize bipartite NLS. The N-terminal truncated mutants and the bipartite NLS mutants of BmADARa suggest that the bipartite NLS is the major nuclear import site and a crucial structure for self-dimerization of BmADARa. In conclusion, the N-terminal bipartite NLS of BmADARa is recognized by BmKaryopherin α3 and BmImportin α5, facilitating its nuclear import. This promotes BmADARa self-dimerization and maintains the stability of dimerization, thereby enhancing its editing efficiency on target substrates. The results of this research demonstrate the role of bipartite NLS in BmADARa editing and laying a foundation for further research on the regulation of BmADARa in the growth and development in B. mori.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.