超强动态超分子离子传导弹性体诱导均匀的 Li+ 传输并稳定相间层,确保锂金属阳极无树枝状突起。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hong Liu, Fengxu Zhen, Xiangkai Yin, Yingbin Wu, Kailiang Yu, Xiangpeng Kong, Shujiang Ding, Wei Yu
{"title":"超强动态超分子离子传导弹性体诱导均匀的 Li+ 传输并稳定相间层,确保锂金属阳极无树枝状突起。","authors":"Hong Liu,&nbsp;Fengxu Zhen,&nbsp;Xiangkai Yin,&nbsp;Yingbin Wu,&nbsp;Kailiang Yu,&nbsp;Xiangpeng Kong,&nbsp;Shujiang Ding,&nbsp;Wei Yu","doi":"10.1002/anie.202414599","DOIUrl":null,"url":null,"abstract":"<p>Artificial polymer solid electrolyte interphases (SEIs) with microphase-separated structures provide promising solutions to the inhomogeneity and cracking issues of natural SEIs in lithium metal batteries (LMBs). However, achieving homogeneous ionic conductivity, excellent mechanical properties, and superior interfacial stability remains challenging due to interference from hard-phase domains in ion transport and solid-solid interface issues with lithium metal. Herein, we present a dynamic supramolecular ion-conducting poly (urethane-urea) interphase (DSIPI) that achieves these three properties through modulating the hard-phase domains and constructing a composite SEI in situ. The soft-phase polytetrahydrofuran backbone, featuring loose Li<sup>+</sup>−O coordinating interactions, ensures uniform Li<sup>+</sup> transport. Concurrently, sextuple hydrogen bonds in the hard phase dissipate strain energy through sequential bond cleavage, thereby imparting exceptional mechanical properties. Moreover, enriched bis (trifluoromethanesulfonyl) imide anion (TFSI<sup>−</sup>) in DSIPI promotes the in situ formation of a stable polymer-inorganic composite SEI during cycling. Consequently, the DSIPI-protected lithium anode (DSIPI@Li) enables symmetric cells with exceptional cyclability exceeding 4,000 hours at an ultra-high current density of 20 mA cm<sup>−2</sup>, thereby demonstrating excellent cycling stability. Furthermore, DSIPI@Li facilitates stable operation of the pouch cells under the constraints of a high-loading LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode and low negative/positive capacity (N/P) ratio. This work presents a powerful strategy for designing artificial SEIs and high-performance LMBs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 2","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-Tough Dynamic Supramolecular Ion-Conducting Elastomer Induced Uniform Li+ Transport and Stabilizes Interphase Ensures Dendrite-Free Lithium Metal Anodes\",\"authors\":\"Hong Liu,&nbsp;Fengxu Zhen,&nbsp;Xiangkai Yin,&nbsp;Yingbin Wu,&nbsp;Kailiang Yu,&nbsp;Xiangpeng Kong,&nbsp;Shujiang Ding,&nbsp;Wei Yu\",\"doi\":\"10.1002/anie.202414599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Artificial polymer solid electrolyte interphases (SEIs) with microphase-separated structures provide promising solutions to the inhomogeneity and cracking issues of natural SEIs in lithium metal batteries (LMBs). However, achieving homogeneous ionic conductivity, excellent mechanical properties, and superior interfacial stability remains challenging due to interference from hard-phase domains in ion transport and solid-solid interface issues with lithium metal. Herein, we present a dynamic supramolecular ion-conducting poly (urethane-urea) interphase (DSIPI) that achieves these three properties through modulating the hard-phase domains and constructing a composite SEI in situ. The soft-phase polytetrahydrofuran backbone, featuring loose Li<sup>+</sup>−O coordinating interactions, ensures uniform Li<sup>+</sup> transport. Concurrently, sextuple hydrogen bonds in the hard phase dissipate strain energy through sequential bond cleavage, thereby imparting exceptional mechanical properties. Moreover, enriched bis (trifluoromethanesulfonyl) imide anion (TFSI<sup>−</sup>) in DSIPI promotes the in situ formation of a stable polymer-inorganic composite SEI during cycling. Consequently, the DSIPI-protected lithium anode (DSIPI@Li) enables symmetric cells with exceptional cyclability exceeding 4,000 hours at an ultra-high current density of 20 mA cm<sup>−2</sup>, thereby demonstrating excellent cycling stability. Furthermore, DSIPI@Li facilitates stable operation of the pouch cells under the constraints of a high-loading LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode and low negative/positive capacity (N/P) ratio. This work presents a powerful strategy for designing artificial SEIs and high-performance LMBs.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 2\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414599\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414599","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有微相分离结构的人造聚合物固体电解质相间层(SEIs)为解决锂金属电池(LMB)中天然 SEIs 的不均匀性和开裂问题提供了很好的解决方案。然而,由于硬相域对离子传输的干扰以及锂金属的固-固界面问题,要实现均匀的离子传导性、优异的机械性能和卓越的界面稳定性仍然具有挑战性。在此,我们提出了一种动态超分子离子传导聚(尿烷-尿素)中间相(DSIPI),通过调节硬相域和原位构建复合 SEI 来实现上述三种特性。软相聚四氢呋喃骨架具有松散的 Li+-O 配位相互作用,可确保 Li+ 的均匀传输。同时,硬相中的六倍氢键通过连续的键裂解消散应变能,从而赋予其优异的机械性能。此外,DSIPI 中富含的双(三氟甲烷磺酰)亚氨基(TFSI-)可促进在循环过程中就地形成稳定的聚合物-无机复合 SEI。因此,受 DSIPI 保护的锂阳极(DSIPI@Li)可使对称电池在 20 mA cm-2 的超高电流密度下循环超过 4,000 小时,表现出卓越的循环稳定性。此外,DSIPI@Li 还能在高负载 LiNi0.8Co0.1Mn0.1O2 阴极和低负极/正极容量(N/P)比的限制下促进袋式电池的稳定运行。这项研究为设计人工 SEI 和高性能 LMB 提供了一种强有力的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultra-Tough Dynamic Supramolecular Ion-Conducting Elastomer Induced Uniform Li+ Transport and Stabilizes Interphase Ensures Dendrite-Free Lithium Metal Anodes

Ultra-Tough Dynamic Supramolecular Ion-Conducting Elastomer Induced Uniform Li+ Transport and Stabilizes Interphase Ensures Dendrite-Free Lithium Metal Anodes

Artificial polymer solid electrolyte interphases (SEIs) with microphase-separated structures provide promising solutions to the inhomogeneity and cracking issues of natural SEIs in lithium metal batteries (LMBs). However, achieving homogeneous ionic conductivity, excellent mechanical properties, and superior interfacial stability remains challenging due to interference from hard-phase domains in ion transport and solid-solid interface issues with lithium metal. Herein, we present a dynamic supramolecular ion-conducting poly (urethane-urea) interphase (DSIPI) that achieves these three properties through modulating the hard-phase domains and constructing a composite SEI in situ. The soft-phase polytetrahydrofuran backbone, featuring loose Li+−O coordinating interactions, ensures uniform Li+ transport. Concurrently, sextuple hydrogen bonds in the hard phase dissipate strain energy through sequential bond cleavage, thereby imparting exceptional mechanical properties. Moreover, enriched bis (trifluoromethanesulfonyl) imide anion (TFSI) in DSIPI promotes the in situ formation of a stable polymer-inorganic composite SEI during cycling. Consequently, the DSIPI-protected lithium anode (DSIPI@Li) enables symmetric cells with exceptional cyclability exceeding 4,000 hours at an ultra-high current density of 20 mA cm−2, thereby demonstrating excellent cycling stability. Furthermore, DSIPI@Li facilitates stable operation of the pouch cells under the constraints of a high-loading LiNi0.8Co0.1Mn0.1O2 cathode and low negative/positive capacity (N/P) ratio. This work presents a powerful strategy for designing artificial SEIs and high-performance LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信