{"title":"天然植物花青素/紫杉醇胶束释放治疗性 P53,激活 HER2 或 ER 阳性乳腺癌的细胞凋亡。","authors":"Ling-Kun Zhang, Yuan Li, Limin Zhai, Yunzhi Tang, Yuxuan Jiao, Yitong Mei, Runcai Yang, Rong You, Liang Yin, He Ni, Jian Ge, Yan-Qing Guan","doi":"10.1021/acsbiomaterials.4c00756","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>P53</i> gene is commonly mutated in breast cancer, protein based the gene as anticancer drugs could provide efficient and stable advantages by restoring the function of the wild-type P53 protein. In this study, we describe the creation and utilization of a micelle composed by natural phycocyanin and paclitaxel and grafting anti-HER2 (PPH), which effectively packages and transports recombinant P53 protein with anti-ER (PE), resulting in a new entity designated as PE@PPH, to address localization obstacles and modify cellular tropism to the cell membrane or nucleus. The results indicate that PE@PPH has strong antitumor properties, even at low doses of PTX both <i>in vitro</i> and <i>in vivo</i>. These findings suggest that PE@PPH could be an enhancing micelle for delivering therapeutic proteins and promoting protein functional recovery, particularly in addressing the challenges posed by tumor heterogeneity in breast cancer.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Phycocyanin/Paclitaxel Micelle Delivery of Therapeutic P53 to Activate Apoptosis for HER2 or ER Positive Breast Cancer Therapy.\",\"authors\":\"Ling-Kun Zhang, Yuan Li, Limin Zhai, Yunzhi Tang, Yuxuan Jiao, Yitong Mei, Runcai Yang, Rong You, Liang Yin, He Ni, Jian Ge, Yan-Qing Guan\",\"doi\":\"10.1021/acsbiomaterials.4c00756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>P53</i> gene is commonly mutated in breast cancer, protein based the gene as anticancer drugs could provide efficient and stable advantages by restoring the function of the wild-type P53 protein. In this study, we describe the creation and utilization of a micelle composed by natural phycocyanin and paclitaxel and grafting anti-HER2 (PPH), which effectively packages and transports recombinant P53 protein with anti-ER (PE), resulting in a new entity designated as PE@PPH, to address localization obstacles and modify cellular tropism to the cell membrane or nucleus. The results indicate that PE@PPH has strong antitumor properties, even at low doses of PTX both <i>in vitro</i> and <i>in vivo</i>. These findings suggest that PE@PPH could be an enhancing micelle for delivering therapeutic proteins and promoting protein functional recovery, particularly in addressing the challenges posed by tumor heterogeneity in breast cancer.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c00756\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00756","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Natural Phycocyanin/Paclitaxel Micelle Delivery of Therapeutic P53 to Activate Apoptosis for HER2 or ER Positive Breast Cancer Therapy.
The P53 gene is commonly mutated in breast cancer, protein based the gene as anticancer drugs could provide efficient and stable advantages by restoring the function of the wild-type P53 protein. In this study, we describe the creation and utilization of a micelle composed by natural phycocyanin and paclitaxel and grafting anti-HER2 (PPH), which effectively packages and transports recombinant P53 protein with anti-ER (PE), resulting in a new entity designated as PE@PPH, to address localization obstacles and modify cellular tropism to the cell membrane or nucleus. The results indicate that PE@PPH has strong antitumor properties, even at low doses of PTX both in vitro and in vivo. These findings suggest that PE@PPH could be an enhancing micelle for delivering therapeutic proteins and promoting protein functional recovery, particularly in addressing the challenges posed by tumor heterogeneity in breast cancer.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture