Jingjing Ji, Advait D Shukla, Ratnakshi Mandal, Wafiq Ibsan Khondkar, Catilin R Mehl, Arindam Chakraborty, Shikha Nangia
{"title":"纳米级拓扑结构决定了蛋白质中的残基水性。","authors":"Jingjing Ji, Advait D Shukla, Ratnakshi Mandal, Wafiq Ibsan Khondkar, Catilin R Mehl, Arindam Chakraborty, Shikha Nangia","doi":"10.1021/acs.langmuir.4c02142","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins exhibit diverse structures, including pockets, cavities, channels, and bumps, which are crucial in determining their functions. This diversity in topography also introduces significant chemical heterogeneity, with polar and charged domains often juxtaposed with nonpolar domains in proximity. Consequently, accurately assessing the hydropathy of amino acid residues within the intricate nanoscale topology of proteins is essential. This study presents quantitative hydropathy data for 277,877 amino acid residues, computed using the Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) scale. Leveraging this data set comprising 1000 structurally diverse proteins sourced from the Protein Data Bank, we examined residues situated in various nanoscale environments and analyzed hydropathy in relation to protein topography. Our findings indicate that the hydropathy of a residue is intricately linked to both its individual characteristics and the geometric features of its neighboring residues in response to water. Changes in the number and chemical identity of the neighbors, as well as the nanoscale topography surrounding a residue, are mirrored in its hydropathy profile. Our calculations reveal the intricate interplay of hydrophilic, hydroneutral, and hydrophobic residues distributed across the surface and core of proteins. Notably, we observe that protein surfaces can be ten times more hydrophilic than their cores.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"22049-22057"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500397/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoscale Topography Dictates Residue Hydropathy in Proteins.\",\"authors\":\"Jingjing Ji, Advait D Shukla, Ratnakshi Mandal, Wafiq Ibsan Khondkar, Catilin R Mehl, Arindam Chakraborty, Shikha Nangia\",\"doi\":\"10.1021/acs.langmuir.4c02142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins exhibit diverse structures, including pockets, cavities, channels, and bumps, which are crucial in determining their functions. This diversity in topography also introduces significant chemical heterogeneity, with polar and charged domains often juxtaposed with nonpolar domains in proximity. Consequently, accurately assessing the hydropathy of amino acid residues within the intricate nanoscale topology of proteins is essential. This study presents quantitative hydropathy data for 277,877 amino acid residues, computed using the Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) scale. Leveraging this data set comprising 1000 structurally diverse proteins sourced from the Protein Data Bank, we examined residues situated in various nanoscale environments and analyzed hydropathy in relation to protein topography. Our findings indicate that the hydropathy of a residue is intricately linked to both its individual characteristics and the geometric features of its neighboring residues in response to water. Changes in the number and chemical identity of the neighbors, as well as the nanoscale topography surrounding a residue, are mirrored in its hydropathy profile. Our calculations reveal the intricate interplay of hydrophilic, hydroneutral, and hydrophobic residues distributed across the surface and core of proteins. Notably, we observe that protein surfaces can be ten times more hydrophilic than their cores.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"22049-22057\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500397/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02142\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02142","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanoscale Topography Dictates Residue Hydropathy in Proteins.
Proteins exhibit diverse structures, including pockets, cavities, channels, and bumps, which are crucial in determining their functions. This diversity in topography also introduces significant chemical heterogeneity, with polar and charged domains often juxtaposed with nonpolar domains in proximity. Consequently, accurately assessing the hydropathy of amino acid residues within the intricate nanoscale topology of proteins is essential. This study presents quantitative hydropathy data for 277,877 amino acid residues, computed using the Protocol for Assigning a Residue's Character on a Hydropathy (PARCH) scale. Leveraging this data set comprising 1000 structurally diverse proteins sourced from the Protein Data Bank, we examined residues situated in various nanoscale environments and analyzed hydropathy in relation to protein topography. Our findings indicate that the hydropathy of a residue is intricately linked to both its individual characteristics and the geometric features of its neighboring residues in response to water. Changes in the number and chemical identity of the neighbors, as well as the nanoscale topography surrounding a residue, are mirrored in its hydropathy profile. Our calculations reveal the intricate interplay of hydrophilic, hydroneutral, and hydrophobic residues distributed across the surface and core of proteins. Notably, we observe that protein surfaces can be ten times more hydrophilic than their cores.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).