在 Fe2N/g-C3N4 异质结内原位构建原子级 Fe-O 键桥,以实现高效的可见光驱动光催化 H2 生产。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Langmuir Pub Date : 2024-10-22 Epub Date: 2024-10-10 DOI:10.1021/acs.langmuir.4c02777
Qian Zheng, Jiajun Fu, Guanyu Wu, Xunhuai Huang, Jiafeng Fan, Baoting Tan, Zhilong Song, Yanhua Song, Jia Yan
{"title":"在 Fe2N/g-C3N4 异质结内原位构建原子级 Fe-O 键桥,以实现高效的可见光驱动光催化 H2 生产。","authors":"Qian Zheng, Jiajun Fu, Guanyu Wu, Xunhuai Huang, Jiafeng Fan, Baoting Tan, Zhilong Song, Yanhua Song, Jia Yan","doi":"10.1021/acs.langmuir.4c02777","DOIUrl":null,"url":null,"abstract":"<p><p>The limited active sites and faster photogenerated electron-hole pair recombination rate of g-C<sub>3</sub>N<sub>4</sub> restrict its application in photocatalytic H<sub>2</sub> production. Constructing heterojunctions has been shown to improve the spatial (directional) separation of photogenerated electrons and holes. However, due to interface mismatch in traditional heterojunction structures and a lack of precise electron transport channels, the photocatalytic efficiency is limited. Here, we developed a two-step calcination approach to create an Fe<sub>2</sub>N/g-C<sub>3</sub>N<sub>4</sub> heterojunction linked by Fe-O bonds (named as Fe-OCN). The newly formed Fe-O bonds within the heterojunction can act as atomic-level interface electron transfer channels, directly transferring the photogenerated electrons of g-C<sub>3</sub>N<sub>4</sub> to the reactive center Fe<sub>2</sub>N, significantly improving the charge transfer rate and utilization, thus promoting visible-light-driven photocatalytic H<sub>2</sub> production. The optimal Fe-OCN achieved a H<sub>2</sub> production rate of 5986.29 μmol g<sup>-1</sup> h<sup>-1</sup> under visible light, 13.44 times higher than that of the OCN due to efficient charge separation and transfer capabilities. This work provides a constructive reference for the design and synthesis of organic-inorganic heterojunction with chemically bonded interfaces, establishing quick electron transfer channels, and achieving targeted electron transfer.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Situ Construction of Atomic-Level Fe-O Bond Bridges within Fe<sub>2</sub>N/g-C<sub>3</sub>N<sub>4</sub> Heterojunction for Efficient Visible-Light-Driven Photocatalytic H<sub>2</sub> Production.\",\"authors\":\"Qian Zheng, Jiajun Fu, Guanyu Wu, Xunhuai Huang, Jiafeng Fan, Baoting Tan, Zhilong Song, Yanhua Song, Jia Yan\",\"doi\":\"10.1021/acs.langmuir.4c02777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The limited active sites and faster photogenerated electron-hole pair recombination rate of g-C<sub>3</sub>N<sub>4</sub> restrict its application in photocatalytic H<sub>2</sub> production. Constructing heterojunctions has been shown to improve the spatial (directional) separation of photogenerated electrons and holes. However, due to interface mismatch in traditional heterojunction structures and a lack of precise electron transport channels, the photocatalytic efficiency is limited. Here, we developed a two-step calcination approach to create an Fe<sub>2</sub>N/g-C<sub>3</sub>N<sub>4</sub> heterojunction linked by Fe-O bonds (named as Fe-OCN). The newly formed Fe-O bonds within the heterojunction can act as atomic-level interface electron transfer channels, directly transferring the photogenerated electrons of g-C<sub>3</sub>N<sub>4</sub> to the reactive center Fe<sub>2</sub>N, significantly improving the charge transfer rate and utilization, thus promoting visible-light-driven photocatalytic H<sub>2</sub> production. The optimal Fe-OCN achieved a H<sub>2</sub> production rate of 5986.29 μmol g<sup>-1</sup> h<sup>-1</sup> under visible light, 13.44 times higher than that of the OCN due to efficient charge separation and transfer capabilities. This work provides a constructive reference for the design and synthesis of organic-inorganic heterojunction with chemically bonded interfaces, establishing quick electron transfer channels, and achieving targeted electron transfer.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02777\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02777","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

g-C3N4 的活性位点有限,光生电子-空穴对重组速度较快,这限制了其在光催化 H2 生产中的应用。研究表明,构建异质结可以改善光生电子和空穴的空间(方向)分离。然而,由于传统异质结结构中的界面不匹配以及缺乏精确的电子传输通道,光催化效率受到了限制。在此,我们开发了一种两步煅烧法,以创建由 Fe-O 键连接的 Fe2N/g-C3N4 异质结(命名为 Fe-OCN)。异质结中新形成的 Fe-O 键可作为原子级界面电子转移通道,直接将 g-C3N4 的光生电子转移到反应中心 Fe2N 上,显著提高电荷转移率和利用率,从而促进可见光驱动的光催化 H2 生产。由于高效的电荷分离和转移能力,最优的 Fe-OCN 在可见光下的 H2 产率达到 5986.29 μmol g-1 h-1,是 OCN 的 13.44 倍。这项工作为设计和合成具有化学键合界面的有机-无机异质结,建立快速电子转移通道,实现有针对性的电子转移提供了建设性的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-Situ Construction of Atomic-Level Fe-O Bond Bridges within Fe<sub>2</sub>N/g-C<sub>3</sub>N<sub>4</sub> Heterojunction for Efficient Visible-Light-Driven Photocatalytic H<sub>2</sub> Production.

In-Situ Construction of Atomic-Level Fe-O Bond Bridges within Fe2N/g-C3N4 Heterojunction for Efficient Visible-Light-Driven Photocatalytic H2 Production.

The limited active sites and faster photogenerated electron-hole pair recombination rate of g-C3N4 restrict its application in photocatalytic H2 production. Constructing heterojunctions has been shown to improve the spatial (directional) separation of photogenerated electrons and holes. However, due to interface mismatch in traditional heterojunction structures and a lack of precise electron transport channels, the photocatalytic efficiency is limited. Here, we developed a two-step calcination approach to create an Fe2N/g-C3N4 heterojunction linked by Fe-O bonds (named as Fe-OCN). The newly formed Fe-O bonds within the heterojunction can act as atomic-level interface electron transfer channels, directly transferring the photogenerated electrons of g-C3N4 to the reactive center Fe2N, significantly improving the charge transfer rate and utilization, thus promoting visible-light-driven photocatalytic H2 production. The optimal Fe-OCN achieved a H2 production rate of 5986.29 μmol g-1 h-1 under visible light, 13.44 times higher than that of the OCN due to efficient charge separation and transfer capabilities. This work provides a constructive reference for the design and synthesis of organic-inorganic heterojunction with chemically bonded interfaces, establishing quick electron transfer channels, and achieving targeted electron transfer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信