Chandramauli Awasthi, Richard M. Vogel, A. Sankarasubramanian
{"title":"气候弹性的区域化保留了 Dooge 的互补关系","authors":"Chandramauli Awasthi, Richard M. Vogel, A. Sankarasubramanian","doi":"10.1029/2023wr036606","DOIUrl":null,"url":null,"abstract":"Climate elasticity of streamflow represents a nondimensional measure of the sensitivity of streamflow to climatic factors. Estimation of such elasticities from observational records has become an important alternative to scenario-based methods of evaluating streamflow sensitivity to climate. Nearly all previous elasticity studies have used a definition of elasticity known as arc elasticity, which measures changes in streamflow about mean values of streamflow and climate. Using observational records in the western U.S., our findings reveal that elasticity definitions based on power law models lead to both regional and basin specific estimates of elasticity which are physically more realistic than estimates based on arc elasticity. Evaluating the ability of arc and power law elasticity estimators in reproducing Dooge's complementary relationship (DCR) between potential evapotranspiration and precipitation elasticities reveal that power law elasticities estimated from at-site, panel, and hierarchical statistical models reproduce DCR, whereas corresponding estimators based on arc elasticity cannot reproduce DCR. Importantly, our regional elasticity formulations using panel and hierarchical formulations led to estimates of both regional and basin specific estimates of elasticities, enabling and contrasting streamflow sensitivity to climate across both basins and regions.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"43 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regionalization of Climate Elasticity Preserves Dooge's Complementary Relationship\",\"authors\":\"Chandramauli Awasthi, Richard M. Vogel, A. Sankarasubramanian\",\"doi\":\"10.1029/2023wr036606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate elasticity of streamflow represents a nondimensional measure of the sensitivity of streamflow to climatic factors. Estimation of such elasticities from observational records has become an important alternative to scenario-based methods of evaluating streamflow sensitivity to climate. Nearly all previous elasticity studies have used a definition of elasticity known as arc elasticity, which measures changes in streamflow about mean values of streamflow and climate. Using observational records in the western U.S., our findings reveal that elasticity definitions based on power law models lead to both regional and basin specific estimates of elasticity which are physically more realistic than estimates based on arc elasticity. Evaluating the ability of arc and power law elasticity estimators in reproducing Dooge's complementary relationship (DCR) between potential evapotranspiration and precipitation elasticities reveal that power law elasticities estimated from at-site, panel, and hierarchical statistical models reproduce DCR, whereas corresponding estimators based on arc elasticity cannot reproduce DCR. Importantly, our regional elasticity formulations using panel and hierarchical formulations led to estimates of both regional and basin specific estimates of elasticities, enabling and contrasting streamflow sensitivity to climate across both basins and regions.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036606\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036606","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Regionalization of Climate Elasticity Preserves Dooge's Complementary Relationship
Climate elasticity of streamflow represents a nondimensional measure of the sensitivity of streamflow to climatic factors. Estimation of such elasticities from observational records has become an important alternative to scenario-based methods of evaluating streamflow sensitivity to climate. Nearly all previous elasticity studies have used a definition of elasticity known as arc elasticity, which measures changes in streamflow about mean values of streamflow and climate. Using observational records in the western U.S., our findings reveal that elasticity definitions based on power law models lead to both regional and basin specific estimates of elasticity which are physically more realistic than estimates based on arc elasticity. Evaluating the ability of arc and power law elasticity estimators in reproducing Dooge's complementary relationship (DCR) between potential evapotranspiration and precipitation elasticities reveal that power law elasticities estimated from at-site, panel, and hierarchical statistical models reproduce DCR, whereas corresponding estimators based on arc elasticity cannot reproduce DCR. Importantly, our regional elasticity formulations using panel and hierarchical formulations led to estimates of both regional and basin specific estimates of elasticities, enabling and contrasting streamflow sensitivity to climate across both basins and regions.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.