多孔 Cu1/TiO2-x 催化结合袋实现硝酸盐到氨气的近自然转化

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Li-Ying Zhang, Wenzhe Shang, Sen Qiao, Wei Liu, Yantao Shi
{"title":"多孔 Cu1/TiO2-x 催化结合袋实现硝酸盐到氨气的近自然转化","authors":"Li-Ying Zhang, Wenzhe Shang, Sen Qiao, Wei Liu, Yantao Shi","doi":"10.1021/acscatal.4c03006","DOIUrl":null,"url":null,"abstract":"Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) provides unique opportunities to mitigate nitrate wastewater pollution and green ammonia production, yet the sluggish kinetics regarding 8e<sup>–</sup> transfer and collective activation of multiple reactants and intermediates remain a fundamental challenge. In this study, we present a cooperative catalyst design of atomically dispersed Cu<sub>1</sub> species embedding onto reduced anatase TiO<sub>2–<i>x</i></sub> with rich multistage pores and oxygen vacancies (POVs), affording the target POVs-Cu<sup>δ+</sup>-TiO<sub>2</sub> with a multisite nature. Particularly, the oxygen vacancies and Cu<sub>1</sub> sites in proximity feature a conformational enzyme-mimicking nanopocket, which essentially governs the binding fit of mutative nitrogenate intermediates in the context of synergistic catalysis. The POVs-Cu<sup>δ+</sup>-TiO<sub>2</sub> delivers a near-unity Faradaic efficiency (product basis 95.0%) and remarkable ammonia yield rate up to 1321.2 μmol h<sup>–1</sup> mg<sub>cat</sub><sup>–1</sup> at −0.7 V vs RHE. This study underscores the surface topography engineering on reduced metal oxides and the promising synergistic effects over the NO<sub>3</sub>RR electrocatalysis, providing a better alternative for nitrate wastewater pollution treatment and ammonia production.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"24 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous Cu1/TiO2–x Catalytic Binding Pocket for Near-Unity Nitrate-to-Ammonia Conversion\",\"authors\":\"Li-Ying Zhang, Wenzhe Shang, Sen Qiao, Wei Liu, Yantao Shi\",\"doi\":\"10.1021/acscatal.4c03006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) provides unique opportunities to mitigate nitrate wastewater pollution and green ammonia production, yet the sluggish kinetics regarding 8e<sup>–</sup> transfer and collective activation of multiple reactants and intermediates remain a fundamental challenge. In this study, we present a cooperative catalyst design of atomically dispersed Cu<sub>1</sub> species embedding onto reduced anatase TiO<sub>2–<i>x</i></sub> with rich multistage pores and oxygen vacancies (POVs), affording the target POVs-Cu<sup>δ+</sup>-TiO<sub>2</sub> with a multisite nature. Particularly, the oxygen vacancies and Cu<sub>1</sub> sites in proximity feature a conformational enzyme-mimicking nanopocket, which essentially governs the binding fit of mutative nitrogenate intermediates in the context of synergistic catalysis. The POVs-Cu<sup>δ+</sup>-TiO<sub>2</sub> delivers a near-unity Faradaic efficiency (product basis 95.0%) and remarkable ammonia yield rate up to 1321.2 μmol h<sup>–1</sup> mg<sub>cat</sub><sup>–1</sup> at −0.7 V vs RHE. This study underscores the surface topography engineering on reduced metal oxides and the promising synergistic effects over the NO<sub>3</sub>RR electrocatalysis, providing a better alternative for nitrate wastewater pollution treatment and ammonia production.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c03006\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c03006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电催化硝酸盐还原反应(NO3RR)为减轻硝酸盐废水污染和绿色合成氨生产提供了独特的机会,然而,8e-转移和多个反应物及中间产物的集体活化的缓慢动力学仍然是一个基本挑战。在本研究中,我们提出了一种合作催化剂设计,将原子分散的 Cu1 物种嵌入具有丰富多级孔隙和氧空位(POVs)的还原锐钛型 TiO2-x,从而获得具有多位点性质的目标 POVs-Cuδ+-TiO2。特别是,氧空位和 Cu1 位点附近有一个构象模拟酶的纳米口袋,在协同催化的背景下,它从根本上决定了突变氮酸盐中间体的结合适应性。POVs-Cuδ+-TiO2 在 -0.7 V 与 RHE 相比时,具有接近统一的法拉第效率(产物基 95.0%)和显著的氨产量,高达 1321.2 μmol h-1 mgcat-1。这项研究强调了还原金属氧化物的表面形貌工程和对 NO3RR 电催化的协同效应,为硝酸盐废水污染处理和氨生产提供了更好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Porous Cu1/TiO2–x Catalytic Binding Pocket for Near-Unity Nitrate-to-Ammonia Conversion

Porous Cu1/TiO2–x Catalytic Binding Pocket for Near-Unity Nitrate-to-Ammonia Conversion
Electrocatalytic nitrate reduction reaction (NO3RR) provides unique opportunities to mitigate nitrate wastewater pollution and green ammonia production, yet the sluggish kinetics regarding 8e transfer and collective activation of multiple reactants and intermediates remain a fundamental challenge. In this study, we present a cooperative catalyst design of atomically dispersed Cu1 species embedding onto reduced anatase TiO2–x with rich multistage pores and oxygen vacancies (POVs), affording the target POVs-Cuδ+-TiO2 with a multisite nature. Particularly, the oxygen vacancies and Cu1 sites in proximity feature a conformational enzyme-mimicking nanopocket, which essentially governs the binding fit of mutative nitrogenate intermediates in the context of synergistic catalysis. The POVs-Cuδ+-TiO2 delivers a near-unity Faradaic efficiency (product basis 95.0%) and remarkable ammonia yield rate up to 1321.2 μmol h–1 mgcat–1 at −0.7 V vs RHE. This study underscores the surface topography engineering on reduced metal oxides and the promising synergistic effects over the NO3RR electrocatalysis, providing a better alternative for nitrate wastewater pollution treatment and ammonia production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信