{"title":"处理多标准决策问题中冗余标准的新型无监督能力识别方法","authors":"Guilherme Dean Pelegrina;Leonardo Tomazeli Duarte","doi":"10.1109/TFUZZ.2024.3476484","DOIUrl":null,"url":null,"abstract":"The use of the Choquet integral in multicriteria decision making problems has gained attention in the last two decades. Despite of its usefulness, there is the issue of how to define the Choquet integral parameters, called capacity coefficients, specially the ones associated with coalitions of criteria. A possible approach to address this issue is based on unsupervised learning, which aims to define such parameters with the goal of mitigating undesirable effects provided by intercriteria relations. However, current unsupervised approaches present some drawbacks, as there is no guarantee that the parameters are equally prioritized in the learning procedure. In this article, we propose a novel unsupervised capacity identification approach which ensures a fair learning for all parameters. Moreover, in comparison with the existing methods, our proposal is less complex in terms of optimization, as it is based on a linear formulation. Experimental results in both synthetic and real datasets attest the applicability of our proposal.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"32 12","pages":"7196-7201"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Unsupervised Capacity Identification Approach to Deal With Redundant Criteria in Multicriteria Decision Making Problems\",\"authors\":\"Guilherme Dean Pelegrina;Leonardo Tomazeli Duarte\",\"doi\":\"10.1109/TFUZZ.2024.3476484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of the Choquet integral in multicriteria decision making problems has gained attention in the last two decades. Despite of its usefulness, there is the issue of how to define the Choquet integral parameters, called capacity coefficients, specially the ones associated with coalitions of criteria. A possible approach to address this issue is based on unsupervised learning, which aims to define such parameters with the goal of mitigating undesirable effects provided by intercriteria relations. However, current unsupervised approaches present some drawbacks, as there is no guarantee that the parameters are equally prioritized in the learning procedure. In this article, we propose a novel unsupervised capacity identification approach which ensures a fair learning for all parameters. Moreover, in comparison with the existing methods, our proposal is less complex in terms of optimization, as it is based on a linear formulation. Experimental results in both synthetic and real datasets attest the applicability of our proposal.\",\"PeriodicalId\":13212,\"journal\":{\"name\":\"IEEE Transactions on Fuzzy Systems\",\"volume\":\"32 12\",\"pages\":\"7196-7201\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10711235/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10711235/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Novel Unsupervised Capacity Identification Approach to Deal With Redundant Criteria in Multicriteria Decision Making Problems
The use of the Choquet integral in multicriteria decision making problems has gained attention in the last two decades. Despite of its usefulness, there is the issue of how to define the Choquet integral parameters, called capacity coefficients, specially the ones associated with coalitions of criteria. A possible approach to address this issue is based on unsupervised learning, which aims to define such parameters with the goal of mitigating undesirable effects provided by intercriteria relations. However, current unsupervised approaches present some drawbacks, as there is no guarantee that the parameters are equally prioritized in the learning procedure. In this article, we propose a novel unsupervised capacity identification approach which ensures a fair learning for all parameters. Moreover, in comparison with the existing methods, our proposal is less complex in terms of optimization, as it is based on a linear formulation. Experimental results in both synthetic and real datasets attest the applicability of our proposal.
期刊介绍:
The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.