具有发射机非线性的无源双向雷达中的杂波消除

Stephen Searle;Gottfried Lechner;Kutluyil Doğançay
{"title":"具有发射机非线性的无源双向雷达中的杂波消除","authors":"Stephen Searle;Gottfried Lechner;Kutluyil Doğançay","doi":"10.1109/TRS.2024.3462471","DOIUrl":null,"url":null,"abstract":"Passive bistatic radar (PBR) employs an ambient source of radio frequency (RF) energy, such as a television transmitter, as an illuminator. The continuous nature of such transmissions results in significant interference in the surveillance signal, as direct-path (DP) transmission and returns from clutter. These must be suppressed in order to make target returns detectable. Delay-Doppler processing can be enhanced by demodulating and reconstructing the captured reference signal. However, target detectability is known to be affected when a reconstructed signal is used in the zero-Doppler cancellation (ZDC) process. This study proposes transmitter nonlinearity as a reason for poor cancellation. Analysis of ambiguity peak-to-floor measures suggests that under certain conditions unmodeled nonlinearity will cause degradation in ZDC. Several methods of nonlinearity estimation and modeling are proposed. Simulation evaluates these methods with various levels of nonlinearity and sensor noise. The methods are applied to ambiguity processing of terrestrial digital video broadcast (DVB-T) real data in both single-channel and two-channel receiver configurations. The results are explained with reference to the earlier analysis.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"979-990"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clutter Cancellation in Passive Bistatic Radar With Transmitter Nonlinearity\",\"authors\":\"Stephen Searle;Gottfried Lechner;Kutluyil Doğançay\",\"doi\":\"10.1109/TRS.2024.3462471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive bistatic radar (PBR) employs an ambient source of radio frequency (RF) energy, such as a television transmitter, as an illuminator. The continuous nature of such transmissions results in significant interference in the surveillance signal, as direct-path (DP) transmission and returns from clutter. These must be suppressed in order to make target returns detectable. Delay-Doppler processing can be enhanced by demodulating and reconstructing the captured reference signal. However, target detectability is known to be affected when a reconstructed signal is used in the zero-Doppler cancellation (ZDC) process. This study proposes transmitter nonlinearity as a reason for poor cancellation. Analysis of ambiguity peak-to-floor measures suggests that under certain conditions unmodeled nonlinearity will cause degradation in ZDC. Several methods of nonlinearity estimation and modeling are proposed. Simulation evaluates these methods with various levels of nonlinearity and sensor noise. The methods are applied to ambiguity processing of terrestrial digital video broadcast (DVB-T) real data in both single-channel and two-channel receiver configurations. The results are explained with reference to the earlier analysis.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"2 \",\"pages\":\"979-990\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681485/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10681485/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无源双稳态雷达(PBR)利用周围的射频(RF)能量源(如电视发射机)作为照明器。这种发射的连续性会对监视信号造成严重干扰,如直接路径(DP)发射和杂波回波。必须抑制这些干扰,才能探测到目标回波。可以通过解调和重建捕获的参考信号来加强延迟多普勒处理。然而,众所周知,当在零多普勒消除(ZDC)过程中使用重建信号时,目标可探测性会受到影响。本研究认为发射机非线性是造成消除效果不佳的原因之一。对模糊峰-底测量的分析表明,在某些条件下,未建模的非线性会导致 ZDC 性能下降。本文提出了几种非线性估计和建模方法。模拟评估了这些方法在不同程度的非线性和传感器噪声下的效果。这些方法被应用于单通道和双通道接收器配置下的地面数字视频广播(DVB-T)真实数据的模糊处理。在解释结果时参考了之前的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clutter Cancellation in Passive Bistatic Radar With Transmitter Nonlinearity
Passive bistatic radar (PBR) employs an ambient source of radio frequency (RF) energy, such as a television transmitter, as an illuminator. The continuous nature of such transmissions results in significant interference in the surveillance signal, as direct-path (DP) transmission and returns from clutter. These must be suppressed in order to make target returns detectable. Delay-Doppler processing can be enhanced by demodulating and reconstructing the captured reference signal. However, target detectability is known to be affected when a reconstructed signal is used in the zero-Doppler cancellation (ZDC) process. This study proposes transmitter nonlinearity as a reason for poor cancellation. Analysis of ambiguity peak-to-floor measures suggests that under certain conditions unmodeled nonlinearity will cause degradation in ZDC. Several methods of nonlinearity estimation and modeling are proposed. Simulation evaluates these methods with various levels of nonlinearity and sensor noise. The methods are applied to ambiguity processing of terrestrial digital video broadcast (DVB-T) real data in both single-channel and two-channel receiver configurations. The results are explained with reference to the earlier analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信