UWMamba:利用状态空间模型增强水下图像

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Guanhua An;Ao He;Yudong Wang;Jichang Guo
{"title":"UWMamba:利用状态空间模型增强水下图像","authors":"Guanhua An;Ao He;Yudong Wang;Jichang Guo","doi":"10.1109/LSP.2024.3470752","DOIUrl":null,"url":null,"abstract":"Recently, state space models (SSM) with efficient design, i.e., Mamba, have shown great potential in modeling long-range dependencies with linear complexity. However, the pure SSM-based model yields sub-optimal underwater enhancement performance due to insufficient local details. Given the superiority of convolution in local perception, we propose a hybrid network, named UWMamba, which combines SSM and convolution for underwater image enhancement. We introduce a conv mamba layer (CML) as the foundation layer to combine the visual state space block (VSSB) with convolution. The convolution is used to capture local detailed features, while the VSSB is employed to capture long-range global features, which complement each other. Furthermore, considering underwater images suffer from severe and uneven degradation of spatial regions and color channels, we propose a Mamba Attention Fusion Module (MAFM), which fuses VSSB with an attention mechanism for better perception of channels and spatial regions. Extensive experiments on real-world underwater image datasets demonstrate the promising performance of our method in both objective metrics and subjective comparisons.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UWMamba: UnderWater Image Enhancement With State Space Model\",\"authors\":\"Guanhua An;Ao He;Yudong Wang;Jichang Guo\",\"doi\":\"10.1109/LSP.2024.3470752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, state space models (SSM) with efficient design, i.e., Mamba, have shown great potential in modeling long-range dependencies with linear complexity. However, the pure SSM-based model yields sub-optimal underwater enhancement performance due to insufficient local details. Given the superiority of convolution in local perception, we propose a hybrid network, named UWMamba, which combines SSM and convolution for underwater image enhancement. We introduce a conv mamba layer (CML) as the foundation layer to combine the visual state space block (VSSB) with convolution. The convolution is used to capture local detailed features, while the VSSB is employed to capture long-range global features, which complement each other. Furthermore, considering underwater images suffer from severe and uneven degradation of spatial regions and color channels, we propose a Mamba Attention Fusion Module (MAFM), which fuses VSSB with an attention mechanism for better perception of channels and spatial regions. Extensive experiments on real-world underwater image datasets demonstrate the promising performance of our method in both objective metrics and subjective comparisons.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10700679/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10700679/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近,具有高效设计的状态空间模型(SSM),即 Mamba,在以线性复杂度模拟长程依赖关系方面显示出巨大潜力。然而,由于局部细节不足,基于 SSM 的纯模型无法获得最佳水下增强性能。鉴于卷积在局部感知方面的优越性,我们提出了一种混合网络,命名为 UWMamba,它结合了 SSM 和卷积,用于水下图像增强。我们引入了一个 conv mamba 层(CML)作为基础层,将视觉状态空间块(VSSB)与卷积结合起来。卷积用于捕捉局部细节特征,而视觉状态空间块用于捕捉远距离全局特征,两者相辅相成。此外,考虑到水下图像在空间区域和颜色通道方面存在严重且不均衡的退化,我们提出了一种 Mamba 注意力融合模块(MAFM),它将 VSSB 与注意力机制融合在一起,以便更好地感知通道和空间区域。在真实世界的水下图像数据集上进行的大量实验表明,我们的方法在客观指标和主观比较方面都有良好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UWMamba: UnderWater Image Enhancement With State Space Model
Recently, state space models (SSM) with efficient design, i.e., Mamba, have shown great potential in modeling long-range dependencies with linear complexity. However, the pure SSM-based model yields sub-optimal underwater enhancement performance due to insufficient local details. Given the superiority of convolution in local perception, we propose a hybrid network, named UWMamba, which combines SSM and convolution for underwater image enhancement. We introduce a conv mamba layer (CML) as the foundation layer to combine the visual state space block (VSSB) with convolution. The convolution is used to capture local detailed features, while the VSSB is employed to capture long-range global features, which complement each other. Furthermore, considering underwater images suffer from severe and uneven degradation of spatial regions and color channels, we propose a Mamba Attention Fusion Module (MAFM), which fuses VSSB with an attention mechanism for better perception of channels and spatial regions. Extensive experiments on real-world underwater image datasets demonstrate the promising performance of our method in both objective metrics and subjective comparisons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信