芳基亚噻唑对氨基酸和短肽的光致变色:机理、光化学特性和生物学行为。

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Aleksey A. Gagarin, Artem S. Minin, Vadim A. Shevyrin, Enrico Benassi and Nataliya P. Belskaya
{"title":"芳基亚噻唑对氨基酸和短肽的光致变色:机理、光化学特性和生物学行为。","authors":"Aleksey A. Gagarin, Artem S. Minin, Vadim A. Shevyrin, Enrico Benassi and Nataliya P. Belskaya","doi":"10.1039/D4TB01441C","DOIUrl":null,"url":null,"abstract":"<p >A series of fluorophores based on the (5-methyl-4-phenylthiazol-2-yl)-3-phenylacrylonitrile (MPTA) core were designed and synthesised for photocaging of amino acids and peptides. The photophysical characteristics of these compounds and their hybrids with biomolecules were thoroughly investigated through a joint experimental, spectral and computational approach. The photorelease ability of the obtained amino acids–MPTA and peptides–MPTA hybrids was studied under various conditions, including different UV irradiation wavelength and power, and solvents. The main reaction products were identified using high-performance liquid chromatography combined with high-resolution mass spectrometry. Photo uncaging kinetics was quantitatively studied using absorption spectroscopy. The mechanism of photorelease of amino acids and peptides was elucidated through quantum mechanical calculations, which were also used for the exploration of photophysical properties of the excited states, and photodissociation energetics quantification. Relationships between the structure of fluorophores and photodissociation characteristics were estimated, and fluorophores with the good uncaging characteristics (biomolecule photoreleasing yield, uncaging rate, and effectiveness) were identified. Cell viability assays using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT showed a low cytotoxicity of the hybrids. Confocal microscopy revealed the easy penetration of the hybrids into living cells and their selective accumulation in the endoplasmic reticulum, lipid droplets and mitochondria, depending on their chemical structure.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocaging of amino acids and short peptides by arylidenethiazoles: mechanism, photochemical characteristics and biological behaviour†\",\"authors\":\"Aleksey A. Gagarin, Artem S. Minin, Vadim A. Shevyrin, Enrico Benassi and Nataliya P. Belskaya\",\"doi\":\"10.1039/D4TB01441C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A series of fluorophores based on the (5-methyl-4-phenylthiazol-2-yl)-3-phenylacrylonitrile (MPTA) core were designed and synthesised for photocaging of amino acids and peptides. The photophysical characteristics of these compounds and their hybrids with biomolecules were thoroughly investigated through a joint experimental, spectral and computational approach. The photorelease ability of the obtained amino acids–MPTA and peptides–MPTA hybrids was studied under various conditions, including different UV irradiation wavelength and power, and solvents. The main reaction products were identified using high-performance liquid chromatography combined with high-resolution mass spectrometry. Photo uncaging kinetics was quantitatively studied using absorption spectroscopy. The mechanism of photorelease of amino acids and peptides was elucidated through quantum mechanical calculations, which were also used for the exploration of photophysical properties of the excited states, and photodissociation energetics quantification. Relationships between the structure of fluorophores and photodissociation characteristics were estimated, and fluorophores with the good uncaging characteristics (biomolecule photoreleasing yield, uncaging rate, and effectiveness) were identified. Cell viability assays using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT showed a low cytotoxicity of the hybrids. Confocal microscopy revealed the easy penetration of the hybrids into living cells and their selective accumulation in the endoplasmic reticulum, lipid droplets and mitochondria, depending on their chemical structure.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01441c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01441c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们设计并合成了一系列以(5-甲基-4-苯基噻唑-2-基)-3-苯基丙烯腈(MPTA)为核心的荧光团,用于对氨基酸和肽进行光成像。通过联合实验、光谱和计算方法,对这些化合物及其与生物大分子的混合物的光物理特性进行了深入研究。在不同的紫外线照射波长、功率和溶剂等条件下,研究了所获得的氨基酸-MPTA 和肽-MPTA 混合物的光释放能力。采用高效液相色谱法和高分辨率质谱法对主要反应产物进行了鉴定。利用吸收光谱对光解笼动力学进行了定量研究。通过量子力学计算阐明了氨基酸和肽的光释放机理,还利用量子力学计算探索了激发态的光物理特性,并对光解离能进行了量化。估算了荧光团结构与光解离特性之间的关系,并确定了具有良好解笼特性(生物分子光释放产率、解笼率和有效性)的荧光团。使用 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑或 MTT 进行的细胞活力检测显示,混合物的细胞毒性较低。共聚焦显微镜显示,混合物很容易渗透到活细胞中,并根据其化学结构的不同,选择性地积聚在内质网、脂滴和线粒体中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photocaging of amino acids and short peptides by arylidenethiazoles: mechanism, photochemical characteristics and biological behaviour†

Photocaging of amino acids and short peptides by arylidenethiazoles: mechanism, photochemical characteristics and biological behaviour†

A series of fluorophores based on the (5-methyl-4-phenylthiazol-2-yl)-3-phenylacrylonitrile (MPTA) core were designed and synthesised for photocaging of amino acids and peptides. The photophysical characteristics of these compounds and their hybrids with biomolecules were thoroughly investigated through a joint experimental, spectral and computational approach. The photorelease ability of the obtained amino acids–MPTA and peptides–MPTA hybrids was studied under various conditions, including different UV irradiation wavelength and power, and solvents. The main reaction products were identified using high-performance liquid chromatography combined with high-resolution mass spectrometry. Photo uncaging kinetics was quantitatively studied using absorption spectroscopy. The mechanism of photorelease of amino acids and peptides was elucidated through quantum mechanical calculations, which were also used for the exploration of photophysical properties of the excited states, and photodissociation energetics quantification. Relationships between the structure of fluorophores and photodissociation characteristics were estimated, and fluorophores with the good uncaging characteristics (biomolecule photoreleasing yield, uncaging rate, and effectiveness) were identified. Cell viability assays using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT showed a low cytotoxicity of the hybrids. Confocal microscopy revealed the easy penetration of the hybrids into living cells and their selective accumulation in the endoplasmic reticulum, lipid droplets and mitochondria, depending on their chemical structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信