工程塑形克服收缩:聚合物-胶原蛋白混合体在高级皮肤替代品中的作用。

Christopher Y Leon-Valdivieso, Audrey Bethry, Coline Pinese, Michèle Dai, Christian Pompee, Jean-Marc Pernot, Xavier Garric
{"title":"工程塑形克服收缩:聚合物-胶原蛋白混合体在高级皮肤替代品中的作用。","authors":"Christopher Y Leon-Valdivieso, Audrey Bethry, Coline Pinese, Michèle Dai, Christian Pompee, Jean-Marc Pernot, Xavier Garric","doi":"10.1002/jbm.a.37805","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen gels are the standard dermal equivalents par excellence, however the problem of rapid cell-mediated contraction remains unresolved. Therefore, the development of hybrid constructs (HCs) based on collagen and polymeric scaffolds is proposed to address the mechanical instability that usually limits the formation of new, functional tissue. Equally important, these synthetic structures should be temporary (degradable) while ensuring that cells are well-adapted to the new extracellular environment. In this study, we screened a library of scaffolds made of various polymers, including homopolymers of polycaprolactone (PCL) and poly D,L-lactide (PLA<sub>50</sub>), their blends (PCL/PLA<sub>50</sub>), and copolymers (poly(D,L-lactide-co-caprolactone), PCLLA<sub>50</sub>) to prepare HCs in a layer-by-layer fashion. The properties of polymers and copolymers along with their processability by electrospinning and 3D-printing were evaluated. Then, we assessed the HCs resistance toward cell-mediated contraction as well as the degradation of the polymeric scaffolds. Our results indicate that scaffolds with higher PLA<sub>50</sub> content (e.g., PLA<sub>50</sub> 100%, PCL/PLA<sub>50</sub> or PCLLA<sub>50</sub>, both at 50/50 caprolactone-to-D,L-lactide molar ratio) presented more drawbacks in terms of handleability and processing, while those with greater PCL presence showed structural steadiness and ease to use. All the scaffolds integrated well with the collagen gel to form the corresponding HCs. With few exceptions, the HCs demonstrated good resistance to cell-derived contraction over 3 weeks. Notably, HCs based on PCLLA<sub>50</sub> 90/10 (both versions, electrospun or 3D-printed) performed best, showing only a 5%-17% area reduction compared to the 93% observed in collagen-only gels. This copolymer displayed hydrolytic degradation depending on its shape, with up to 45% and 65% loss of molecular weight for the electrospun and 3D-printed forms, respectively, correlating with their progressive change in mechanical features. HCs containing PCLLA<sub>50</sub> 90/10 also exhibited a better fibroblast distribution, enhanced myofibroblastic differentiation, and a three-fold increase in cell proliferation (when the electrospun type was used) compared to collagen controls. These findings were instrumental in selecting a potential HC that might be used for future experiments in vivo.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Shape to Overcome Contraction: The Role of Polymer-Collagen Hybrids in Advanced Dermal Substitutes.\",\"authors\":\"Christopher Y Leon-Valdivieso, Audrey Bethry, Coline Pinese, Michèle Dai, Christian Pompee, Jean-Marc Pernot, Xavier Garric\",\"doi\":\"10.1002/jbm.a.37805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collagen gels are the standard dermal equivalents par excellence, however the problem of rapid cell-mediated contraction remains unresolved. Therefore, the development of hybrid constructs (HCs) based on collagen and polymeric scaffolds is proposed to address the mechanical instability that usually limits the formation of new, functional tissue. Equally important, these synthetic structures should be temporary (degradable) while ensuring that cells are well-adapted to the new extracellular environment. In this study, we screened a library of scaffolds made of various polymers, including homopolymers of polycaprolactone (PCL) and poly D,L-lactide (PLA<sub>50</sub>), their blends (PCL/PLA<sub>50</sub>), and copolymers (poly(D,L-lactide-co-caprolactone), PCLLA<sub>50</sub>) to prepare HCs in a layer-by-layer fashion. The properties of polymers and copolymers along with their processability by electrospinning and 3D-printing were evaluated. Then, we assessed the HCs resistance toward cell-mediated contraction as well as the degradation of the polymeric scaffolds. Our results indicate that scaffolds with higher PLA<sub>50</sub> content (e.g., PLA<sub>50</sub> 100%, PCL/PLA<sub>50</sub> or PCLLA<sub>50</sub>, both at 50/50 caprolactone-to-D,L-lactide molar ratio) presented more drawbacks in terms of handleability and processing, while those with greater PCL presence showed structural steadiness and ease to use. All the scaffolds integrated well with the collagen gel to form the corresponding HCs. With few exceptions, the HCs demonstrated good resistance to cell-derived contraction over 3 weeks. Notably, HCs based on PCLLA<sub>50</sub> 90/10 (both versions, electrospun or 3D-printed) performed best, showing only a 5%-17% area reduction compared to the 93% observed in collagen-only gels. This copolymer displayed hydrolytic degradation depending on its shape, with up to 45% and 65% loss of molecular weight for the electrospun and 3D-printed forms, respectively, correlating with their progressive change in mechanical features. HCs containing PCLLA<sub>50</sub> 90/10 also exhibited a better fibroblast distribution, enhanced myofibroblastic differentiation, and a three-fold increase in cell proliferation (when the electrospun type was used) compared to collagen controls. These findings were instrumental in selecting a potential HC that might be used for future experiments in vivo.</p>\",\"PeriodicalId\":94066,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbm.a.37805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbm.a.37805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胶原凝胶是标准的真皮等同物,但细胞介导的快速收缩问题仍未解决。因此,建议开发基于胶原蛋白和聚合物支架的混合构造(HCs),以解决通常限制新功能组织形成的机械不稳定性问题。同样重要的是,这些合成结构应该是临时性的(可降解),同时确保细胞能很好地适应新的细胞外环境。在这项研究中,我们筛选了一个由各种聚合物组成的支架库,包括聚己内酯(PCL)和聚 D,L-内酯(PLA50)的均聚物、它们的混合物(PCL/PLA50)和共聚物(聚 D,L-内酯-共己内酯,PCLLA50),以逐层方式制备 HCs。我们评估了聚合物和共聚物的特性,以及它们通过电纺丝和三维打印的可加工性。然后,我们评估了 HCs 对细胞介导的收缩的抵抗力以及聚合物支架的降解情况。结果表明,PLA50 含量较高的支架(如 PLA50 100%、PCL/PLA50 或 PCLLA50,两者的己内酰胺-D,L-内酰胺摩尔比均为 50/50)在可操作性和加工方面存在较多缺陷,而 PCL 含量较高的支架则结构稳定、易于使用。所有支架都能很好地与胶原凝胶结合,形成相应的 HC。除少数例外情况外,HCs 在 3 周内都表现出良好的抗细胞收缩性。值得注意的是,基于 PCLLA50 90/10(两种版本,电纺或三维打印)的 HC 表现最佳,与纯胶原凝胶中 93% 的面积缩减率相比,其面积缩减率仅为 5%-17%。这种共聚物会因形状不同而发生水解降解,电纺型和三维打印型的分子量损失分别高达 45% 和 65%,这与其机械特征的逐渐变化有关。与胶原蛋白对照组相比,含有 PCLLA50 90/10 的 HCs 还表现出更好的成纤维细胞分布、更强的肌成纤维细胞分化能力以及三倍的细胞增殖能力(使用电纺类型时)。这些发现有助于选择一种潜在的 HC,可用于未来的体内实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Shape to Overcome Contraction: The Role of Polymer-Collagen Hybrids in Advanced Dermal Substitutes.

Collagen gels are the standard dermal equivalents par excellence, however the problem of rapid cell-mediated contraction remains unresolved. Therefore, the development of hybrid constructs (HCs) based on collagen and polymeric scaffolds is proposed to address the mechanical instability that usually limits the formation of new, functional tissue. Equally important, these synthetic structures should be temporary (degradable) while ensuring that cells are well-adapted to the new extracellular environment. In this study, we screened a library of scaffolds made of various polymers, including homopolymers of polycaprolactone (PCL) and poly D,L-lactide (PLA50), their blends (PCL/PLA50), and copolymers (poly(D,L-lactide-co-caprolactone), PCLLA50) to prepare HCs in a layer-by-layer fashion. The properties of polymers and copolymers along with their processability by electrospinning and 3D-printing were evaluated. Then, we assessed the HCs resistance toward cell-mediated contraction as well as the degradation of the polymeric scaffolds. Our results indicate that scaffolds with higher PLA50 content (e.g., PLA50 100%, PCL/PLA50 or PCLLA50, both at 50/50 caprolactone-to-D,L-lactide molar ratio) presented more drawbacks in terms of handleability and processing, while those with greater PCL presence showed structural steadiness and ease to use. All the scaffolds integrated well with the collagen gel to form the corresponding HCs. With few exceptions, the HCs demonstrated good resistance to cell-derived contraction over 3 weeks. Notably, HCs based on PCLLA50 90/10 (both versions, electrospun or 3D-printed) performed best, showing only a 5%-17% area reduction compared to the 93% observed in collagen-only gels. This copolymer displayed hydrolytic degradation depending on its shape, with up to 45% and 65% loss of molecular weight for the electrospun and 3D-printed forms, respectively, correlating with their progressive change in mechanical features. HCs containing PCLLA50 90/10 also exhibited a better fibroblast distribution, enhanced myofibroblastic differentiation, and a three-fold increase in cell proliferation (when the electrospun type was used) compared to collagen controls. These findings were instrumental in selecting a potential HC that might be used for future experiments in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信