一种无症状的 geminivirus 能激活自噬,增强植物对多种病原体的防御能力。

Li Wang, Zijie Yu, Mengge Jiang, Mengyuan Tian, Hongsheng Zhou, Wanying Zhao, Ida Bagus Andika, Qiaoxia Shang, Liying Sun
{"title":"一种无症状的 geminivirus 能激活自噬,增强植物对多种病原体的防御能力。","authors":"Li Wang, Zijie Yu, Mengge Jiang, Mengyuan Tian, Hongsheng Zhou, Wanying Zhao, Ida Bagus Andika, Qiaoxia Shang, Liying Sun","doi":"10.1007/s44154-024-00176-8","DOIUrl":null,"url":null,"abstract":"<p><p>Plant viral diseases cause great losses in agricultural production. Virus cross-protection is a strategy in which a mild virus is employed to shield plants against subsequent infections by severe viral strains. However, this approach is restricted to protection against the same viruses. In this study, we observed that pre-inoculation with apple geminivirus (AGV) reduced the accumulation of secondarily infected heterologous viruses, such as cucumber mosaic virus, potato virus X, and tobacco mosaic virus in Nicotiana benthamiana, tomato, and pepper plants. Transcriptional expression analysis showed that autophagy-related genes were transcriptionally up-regulated upon AGV inoculation at an early stage of infection. Accordingly, autophagic activity was observed to be elevated following AGV infection. Interestingly, AGV accumulation was reduced in autophagy-deficient plants, suggesting that autophagy activation promotes AGV infection in the plant. Moreover, pre-inoculation with AGV provided cross-protection against infection with a phytopathogenic bacterium (Pseudomonas syringae) and fungus (Botrytis cinerea) in Nicotiana species. In summary, our study showed that AGV, an asymptomatic virus, could protect plants against severe viral, fungal, and bacterial diseases to some extent through the activation of autophagy pathways, highlighting its potential as a biocontrol agent for managing a wide range of plant crop diseases in the field.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"42"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461731/pdf/","citationCount":"0","resultStr":"{\"title\":\"An asymptomatic geminivirus activates autophagy and enhances plant defenses against diverse pathogens.\",\"authors\":\"Li Wang, Zijie Yu, Mengge Jiang, Mengyuan Tian, Hongsheng Zhou, Wanying Zhao, Ida Bagus Andika, Qiaoxia Shang, Liying Sun\",\"doi\":\"10.1007/s44154-024-00176-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant viral diseases cause great losses in agricultural production. Virus cross-protection is a strategy in which a mild virus is employed to shield plants against subsequent infections by severe viral strains. However, this approach is restricted to protection against the same viruses. In this study, we observed that pre-inoculation with apple geminivirus (AGV) reduced the accumulation of secondarily infected heterologous viruses, such as cucumber mosaic virus, potato virus X, and tobacco mosaic virus in Nicotiana benthamiana, tomato, and pepper plants. Transcriptional expression analysis showed that autophagy-related genes were transcriptionally up-regulated upon AGV inoculation at an early stage of infection. Accordingly, autophagic activity was observed to be elevated following AGV infection. Interestingly, AGV accumulation was reduced in autophagy-deficient plants, suggesting that autophagy activation promotes AGV infection in the plant. Moreover, pre-inoculation with AGV provided cross-protection against infection with a phytopathogenic bacterium (Pseudomonas syringae) and fungus (Botrytis cinerea) in Nicotiana species. In summary, our study showed that AGV, an asymptomatic virus, could protect plants against severe viral, fungal, and bacterial diseases to some extent through the activation of autophagy pathways, highlighting its potential as a biocontrol agent for managing a wide range of plant crop diseases in the field.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"4 1\",\"pages\":\"42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-024-00176-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-024-00176-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物病毒病会给农业生产造成巨大损失。病毒交叉保护是一种策略,利用温和病毒保护植物免受严重病毒株的后续感染。然而,这种方法仅限于针对相同病毒的保护。在本研究中,我们观察到,在烟草、番茄和辣椒植株中,苹果 geminivirus(AGV)的预接种减少了黄瓜花叶病毒、马铃薯病毒 X 和烟草花叶病毒等二次感染异源病毒的积累。转录表达分析表明,在感染早期接种 AGV 后,自噬相关基因的转录上调。相应地,自噬活性也在 AGV 感染后升高。有趣的是,自噬缺陷植物的 AGV 积累减少,这表明自噬激活促进了 AGV 在植物体内的感染。此外,AGV 的预接种还能提供交叉保护,防止烟草植物感染植物病原菌(Pseudomonas syringae)和真菌(Botrytis cinerea)。总之,我们的研究表明,AGV 是一种无症状病毒,可通过激活自噬途径在一定程度上保护植物免受严重病毒、真菌和细菌病害的侵袭,这凸显了它作为一种生物防治剂在田间防治多种植物作物病害的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An asymptomatic geminivirus activates autophagy and enhances plant defenses against diverse pathogens.

Plant viral diseases cause great losses in agricultural production. Virus cross-protection is a strategy in which a mild virus is employed to shield plants against subsequent infections by severe viral strains. However, this approach is restricted to protection against the same viruses. In this study, we observed that pre-inoculation with apple geminivirus (AGV) reduced the accumulation of secondarily infected heterologous viruses, such as cucumber mosaic virus, potato virus X, and tobacco mosaic virus in Nicotiana benthamiana, tomato, and pepper plants. Transcriptional expression analysis showed that autophagy-related genes were transcriptionally up-regulated upon AGV inoculation at an early stage of infection. Accordingly, autophagic activity was observed to be elevated following AGV infection. Interestingly, AGV accumulation was reduced in autophagy-deficient plants, suggesting that autophagy activation promotes AGV infection in the plant. Moreover, pre-inoculation with AGV provided cross-protection against infection with a phytopathogenic bacterium (Pseudomonas syringae) and fungus (Botrytis cinerea) in Nicotiana species. In summary, our study showed that AGV, an asymptomatic virus, could protect plants against severe viral, fungal, and bacterial diseases to some extent through the activation of autophagy pathways, highlighting its potential as a biocontrol agent for managing a wide range of plant crop diseases in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信