{"title":"基于全概率的灵活自适应拉索考克斯虚弱模型","authors":"Maike Hohberg, Andreas Groll","doi":"10.1002/bimj.202300020","DOIUrl":null,"url":null,"abstract":"<p>In this work, a method to regularize Cox frailty models is proposed that accommodates time-varying covariates and time-varying coefficients and is based on the full likelihood instead of the partial likelihood. A particular advantage of this framework is that the baseline hazard can be explicitly modeled in a smooth, semiparametric way, for example, via P-splines. Regularization for variable selection is performed via a lasso penalty and via group lasso for categorical variables while a second penalty regularizes wiggliness of smooth estimates of time-varying coefficients and the baseline hazard. Additionally, adaptive weights are included to stabilize the estimation. The method is implemented in the <span>R</span> function <span>coxlasso</span>, which is now integrated into the package <span>PenCoxFrail</span>, and will be compared to other packages for regularized Cox regression.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300020","citationCount":"0","resultStr":"{\"title\":\"A Flexible Adaptive Lasso Cox Frailty Model Based on the Full Likelihood\",\"authors\":\"Maike Hohberg, Andreas Groll\",\"doi\":\"10.1002/bimj.202300020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a method to regularize Cox frailty models is proposed that accommodates time-varying covariates and time-varying coefficients and is based on the full likelihood instead of the partial likelihood. A particular advantage of this framework is that the baseline hazard can be explicitly modeled in a smooth, semiparametric way, for example, via P-splines. Regularization for variable selection is performed via a lasso penalty and via group lasso for categorical variables while a second penalty regularizes wiggliness of smooth estimates of time-varying coefficients and the baseline hazard. Additionally, adaptive weights are included to stabilize the estimation. The method is implemented in the <span>R</span> function <span>coxlasso</span>, which is now integrated into the package <span>PenCoxFrail</span>, and will be compared to other packages for regularized Cox regression.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Flexible Adaptive Lasso Cox Frailty Model Based on the Full Likelihood
In this work, a method to regularize Cox frailty models is proposed that accommodates time-varying covariates and time-varying coefficients and is based on the full likelihood instead of the partial likelihood. A particular advantage of this framework is that the baseline hazard can be explicitly modeled in a smooth, semiparametric way, for example, via P-splines. Regularization for variable selection is performed via a lasso penalty and via group lasso for categorical variables while a second penalty regularizes wiggliness of smooth estimates of time-varying coefficients and the baseline hazard. Additionally, adaptive weights are included to stabilize the estimation. The method is implemented in the R function coxlasso, which is now integrated into the package PenCoxFrail, and will be compared to other packages for regularized Cox regression.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.