选择前中脑波动影响食物选择的自我控制:功能磁共振成像(fMRI)研究。

IF 2.5 3区 医学 Q2 BEHAVIORAL SCIENCES
Jakub Skałbania, Łukasz Tanajewski, Marcin Furtak, Todd A Hare, Marek Wypych
{"title":"选择前中脑波动影响食物选择的自我控制:功能磁共振成像(fMRI)研究。","authors":"Jakub Skałbania, Łukasz Tanajewski, Marcin Furtak, Todd A Hare, Marek Wypych","doi":"10.3758/s13415-024-01231-7","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have shown that spontaneous pre-stimulus fluctuations in brain activity affect higher-order cognitive processes, including risky decision-making, cognitive flexibility, and aesthetic judgments. However, there is currently no direct evidence to suggest that pre-choice activity influences value-based decisions that require self-control. We examined the impact of fluctuations in pre-choice activity in key regions of the reward system on self-control in food choice. In the functional magnetic resonance imaging (fMRI) scanner, 49 participants made 120 food choices that required self-control in high and low working memory load conditions. The task was designed to ensure that participants were cognitively engaged and not thinking about upcoming choices. We defined self-control success as choosing a food item that was healthier over one that was tastier. The brain regions of interest (ROIs) were the ventral tegmental area (VTA), putamen, nucleus accumbens (NAc), and caudate nucleus. For each participant and condition, we calculated the mean activity in the 3-s interval preceding the presentation of food stimuli in successful and failed self-control trials. These activities were then used as predictors of self-control success in a fixed-effects logistic regression model. The results indicate that increased pre-choice VTA activity was linked to a higher probability of self-control success in a subsequent food-choice task within the low-load condition, but not in the high-load condition. We posit that pre-choice fluctuations in VTA activity change the reference point for immediate (taste) reward evaluation, which may explain our finding. This suggests that the neural context of decisions may be a key factor influencing human behavior.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-choice midbrain fluctuations affect self-control in food choice: A functional magnetic resonance imaging (fMRI) study.\",\"authors\":\"Jakub Skałbania, Łukasz Tanajewski, Marcin Furtak, Todd A Hare, Marek Wypych\",\"doi\":\"10.3758/s13415-024-01231-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have shown that spontaneous pre-stimulus fluctuations in brain activity affect higher-order cognitive processes, including risky decision-making, cognitive flexibility, and aesthetic judgments. However, there is currently no direct evidence to suggest that pre-choice activity influences value-based decisions that require self-control. We examined the impact of fluctuations in pre-choice activity in key regions of the reward system on self-control in food choice. In the functional magnetic resonance imaging (fMRI) scanner, 49 participants made 120 food choices that required self-control in high and low working memory load conditions. The task was designed to ensure that participants were cognitively engaged and not thinking about upcoming choices. We defined self-control success as choosing a food item that was healthier over one that was tastier. The brain regions of interest (ROIs) were the ventral tegmental area (VTA), putamen, nucleus accumbens (NAc), and caudate nucleus. For each participant and condition, we calculated the mean activity in the 3-s interval preceding the presentation of food stimuli in successful and failed self-control trials. These activities were then used as predictors of self-control success in a fixed-effects logistic regression model. The results indicate that increased pre-choice VTA activity was linked to a higher probability of self-control success in a subsequent food-choice task within the low-load condition, but not in the high-load condition. We posit that pre-choice fluctuations in VTA activity change the reference point for immediate (taste) reward evaluation, which may explain our finding. This suggests that the neural context of decisions may be a key factor influencing human behavior.</p>\",\"PeriodicalId\":50672,\"journal\":{\"name\":\"Cognitive Affective & Behavioral Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Affective & Behavioral Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3758/s13415-024-01231-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Affective & Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3758/s13415-024-01231-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,刺激前大脑活动的自发波动会影响高阶认知过程,包括风险决策、认知灵活性和审美判断。然而,目前还没有直接证据表明,选择前活动会影响需要自我控制的基于价值的决策。我们研究了奖赏系统关键区域的选择前活动波动对食物选择自我控制的影响。在功能磁共振成像(fMRI)扫描仪上,49 名参与者在高工作记忆负荷和低工作记忆负荷条件下做出了 120 项需要自我控制的食物选择。这项任务的设计是为了确保参与者的认知处于投入状态,而不去考虑即将做出的选择。我们将自我控制成功定义为选择更健康的食物而不是更美味的食物。感兴趣的脑区(ROIs)包括腹侧被盖区(VTA)、普鲁门、伏隔核(NAc)和尾状核。对于每个参与者和条件,我们计算了在成功和失败的自我控制试验中,食物刺激出现前 3 秒钟间隔内的平均活动。然后将这些活动作为固定效应逻辑回归模型中自我控制成功的预测因子。结果表明,在低负荷条件下,选择前 VTA 活动的增加与随后食物选择任务中更高的自我控制成功概率有关,但与高负荷条件无关。我们认为,选择前 VTA 活动的波动改变了即时(味觉)奖励评估的参考点,这可能解释了我们的发现。这表明,决策的神经背景可能是影响人类行为的一个关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pre-choice midbrain fluctuations affect self-control in food choice: A functional magnetic resonance imaging (fMRI) study.

Recent studies have shown that spontaneous pre-stimulus fluctuations in brain activity affect higher-order cognitive processes, including risky decision-making, cognitive flexibility, and aesthetic judgments. However, there is currently no direct evidence to suggest that pre-choice activity influences value-based decisions that require self-control. We examined the impact of fluctuations in pre-choice activity in key regions of the reward system on self-control in food choice. In the functional magnetic resonance imaging (fMRI) scanner, 49 participants made 120 food choices that required self-control in high and low working memory load conditions. The task was designed to ensure that participants were cognitively engaged and not thinking about upcoming choices. We defined self-control success as choosing a food item that was healthier over one that was tastier. The brain regions of interest (ROIs) were the ventral tegmental area (VTA), putamen, nucleus accumbens (NAc), and caudate nucleus. For each participant and condition, we calculated the mean activity in the 3-s interval preceding the presentation of food stimuli in successful and failed self-control trials. These activities were then used as predictors of self-control success in a fixed-effects logistic regression model. The results indicate that increased pre-choice VTA activity was linked to a higher probability of self-control success in a subsequent food-choice task within the low-load condition, but not in the high-load condition. We posit that pre-choice fluctuations in VTA activity change the reference point for immediate (taste) reward evaluation, which may explain our finding. This suggests that the neural context of decisions may be a key factor influencing human behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.40%
发文量
64
审稿时长
6-12 weeks
期刊介绍: Cognitive, Affective, & Behavioral Neuroscience (CABN) offers theoretical, review, and primary research articles on behavior and brain processes in humans. Coverage includes normal function as well as patients with injuries or processes that influence brain function: neurological disorders, including both healthy and disordered aging; and psychiatric disorders such as schizophrenia and depression. CABN is the leading vehicle for strongly psychologically motivated studies of brain–behavior relationships, through the presentation of papers that integrate psychological theory and the conduct and interpretation of the neuroscientific data. The range of topics includes perception, attention, memory, language, problem solving, reasoning, and decision-making; emotional processes, motivation, reward prediction, and affective states; and individual differences in relevant domains, including personality. Cognitive, Affective, & Behavioral Neuroscience is a publication of the Psychonomic Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信